搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一个新SiH2(11A′)势能面的H+SiH反应动力学研究

赵文丽 宋玉志 马超 高峰 孟庆田

引用本文:
Citation:

基于一个新SiH2(11A′)势能面的H+SiH反应动力学研究

赵文丽, 宋玉志, 马超, 高峰, 孟庆田

Quantum dynamics study of reaction H+SiH using a new potential energy surface of SiH2(11A′)

Zhao Wen-Li, Song Yu-Zhi, Ma Chao, Gao Feng, Meng Qing-Tian
PDF
HTML
导出引用
  • 本文基于2022年报道的一个SiH2(11A′)势能面, 运用切比雪夫波包方法对$ \text{H}{(}^{2}\text{S})+\text{SiH}({\text{X}}^{2}\Pi ; \nu = 0, $$ j = 0)\to \text{Si}{(}^{1}\text{D})+{\text{H}}_{2}({\text{X}}^{1} \Sigma_{g}^{+}) $反应体系在$ 1.0 \times {10^{ - 3}} $—1.0 eV的碰撞能量范围内进行动力学研究. 分别应用忽略科里奥利耦合效应的耦合态近似和精确量子力学计算得到该反应的反应概率、积分散射截面和速率 常数. 计算发现在J 较大时, 科里奥利耦合效应显著提升该反应的反应概率, 忽略科里奥利耦合效应会使H + SiH 反应的积分散射截面和速率常数减小, 对于速率常数而言, 温度越高, 两种计算方法所得结果的差距越大. 精确的量子力学计算结果表明, H + SiH 反应的速率常数在300—1000 K之间几乎不随温度改变, 这与H + CH 反应非常相似, 但是在数值上, 前者比后者大1个数量级.
    Initial state-selected and energy-resolved reaction probabilities, integral cross sections(ICSs), and thermal rate constants of the $ \text{H}{(}^{2}\text{S})+S\text{iH}({\text{X}}^{2}\Pi; \nu = 0\text{ },j = 0)\to \text{Si}{(}^{1}\text{D})+{\text{H}}_{2}({\text{X}}^{1} \Sigma_{g}^{+}) $ reaction are calculated within the coupled state(CS) approximation and accurate calculation with full Coriolis coupling(CC) by a time-dependent wave packet propagation method (Chebyshev wave packet method). Therefore, a new ab initio global potential energy surface (PES) of the electronic ground state (11A′) of the system, which was recently reported by Li et al. [ Phys. Chem. Chem. Phys. 2022 24 7759], is employed. The contributions of all partial waves to the total angular momentum J = 80 for CS approximation and J = 90 for CC calculation are considered to obtain the converged ICSs in a collision energy range of 1.0 ×10–3-1.0 eV. The calculated probabilities and ICSs display a decreasing trend with the increase of the collision energy and show an oscillatory structure due to the SiH2 well on the reaction path. The neglect of CC effect will lead to underestimation of the ICS and the rate constant due to the formation of an SiH2 complex supported by the stationary points of the SiH2(11A′) PES. In addition, the results of the exact calculation including CC effect are compared with those calculated in the CS approximation. For the reaction probability, CC and CS calculations change with similar tends, shown by their observations at small total angular momentum J = 10, 20 and 30, and the CC results are larger than the CS results almost in the whole considered energy range at large total angular momentum J = 40, 50, 60 and 70. The gap between CS and CC probability get more pronounced with increasing of J, which reveals that Coriolis coupling effects become more and more important with J increasing for the title reaction. Moreover, the exact quantum-wave calculations show that the thermal rate constant between 300 K and 1000 K for the title reaction shows a similar temperature independent behavior to that for the H + CH reaction, but the value of the rate constant for the H + SiH reaction is an order of magnitude larger than that for the H + CH reaction.
      通信作者: 高峰, gaofeng@sdau.edu.cn ; 孟庆田, qtmeng@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274265, 12104262)、山东省自然科学基金(批准号: ZR2022MA087, ZR2022MA006, ZR2020QA051)和山东省高等学校“青创团队计划”(批准号: 2022KJ240)资助的课题.
      Corresponding author: Gao Feng, gaofeng@sdau.edu.cn ; Meng Qing-Tian, qtmeng@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274265, 12104262 ), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022MA087, ZR2022MA006, ZR2020QA051), and the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province, China (Grant No. 2022KJ240).
    [1]

    Power D, Brint P, Spalding T 1984 J. Mol. Struct. 108 81Google Scholar

    [2]

    Kalemos A, Dunning Jr T H, Mavridis A 2004 Mol. Phys. 102 2597Google Scholar

    [3]

    Ball J R, Thomson C 1978 Int. J. Quantum Chem 14 39Google Scholar

    [4]

    Allen W D, Schaefer H F 1986 Chem. Phys. 108 243Google Scholar

    [5]

    Jasinski J M, Chu J O 1988 J. Chem. Phys. 88 1678Google Scholar

    [6]

    Herzberg G, Lagerqvist A, Mckenzie B J 1969 Can. J. Phys. 47 1889Google Scholar

    [7]

    Dubois I, Herzberg G, Verma R D 1967 J. Chem. Phys. 47 4262Google Scholar

    [8]

    Dubois I 1968 Can. J. Phys. 46 2485Google Scholar

    [9]

    Thoman Jr J, Steinfeld J 1986 Chem. Phys. Lett. 124 35Google Scholar

    [10]

    Ishikawa H, Kajimoto O 1991 I. Mol. Spectrosc. 150 610Google Scholar

    [11]

    Hirota E, Ishikawa H 1999 J. Chem. Phys. 110 4254Google Scholar

    [12]

    Yurchenko S N, Bunker P R, Kraemer W P, Jensen P 2004 Can. J. Chem. 82 694Google Scholar

    [13]

    Tokue I, Yamasaki K, Nanbu S 2005 J. Chem. Phys. 122 144307Google Scholar

    [14]

    Tokue I, Yamasaki K, Nanbu S 2006 J. Chem. Phys. 124 114308Google Scholar

    [15]

    Wu Y N, Zhang C F, Ma H T 2017 RSC Adv. 7 12074Google Scholar

    [16]

    Cao J W, Wu Y N, Ma H T, Shen Z T, Bian W S 2021 Phys. Chem. Chem. Phys. 23 6141Google Scholar

    [17]

    Wang H N, Lü Y L, Chen J X, Song Y Z, Zhang C Y, Li Y Q 2022 Phys. Chem. Chem. Phys. 24 7759Google Scholar

    [18]

    Skouteris D, Castillo J F, Manolopoulos D E 2000 Comput. Phys. Commun. 133 128Google Scholar

    [19]

    Bulut N, Castillo J F, Jambrina P G, Kłos J, Roncero O, Aoiz F J, Bañares L 2015 J. Phys. Chem. A 119 11951Google Scholar

    [20]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201Google Scholar

    [21]

    Lagana A, Lendvay G 2005 Theory of Chemical Reaction Dynamics (New York : Springer) p217

    [22]

    Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar

    [23]

    Lin S Y, Guo H 2004 J. Phys. Chem. A 108 2141Google Scholar

    [24]

    Gao F, Wang X L, Zhao W L, Song Y Z, Meng Q T 2018 Eur. Phys. J. D 72 224Google Scholar

    [25]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [26]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [27]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [28]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [29]

    Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar

    [30]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [31]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [32]

    Zhang L L, Liu D, Yue D G, Song Y Z, Meng Q T 2020 J. Phys. B: At. , Mol. Opt. Phys. 53 095202Google Scholar

    [33]

    Harding L B, Guadagnini R, Schatz G C 1993 J. Phys. Chem. 97 5472Google Scholar

    [34]

    Peng Y, Jiang Z A, Chen J S 2017 J. Phys. Chem. A 121 2209Google Scholar

    [35]

    Peng Y, Zhang H 2022 J. Phys. Chem. A 126 1946Google Scholar

    [36]

    Buren B, Zhang J P, Li Y Q 2024 J. Phys. Chem. A 128 5115Google Scholar

  • 图 1  $ {\text{Si}}{{\text{H}}_2} $等势线, 图中等势线间隔为0.2 eV (a)γ = 91.5°, 以雅可比坐标RH-SiHRSi-H为横纵坐标; (b) γ = 90°, 以雅可比坐标RSi–HHRHH为横纵坐标; (c) H-Si-H线性结构, 以RSi–HRSi–H为横纵坐标; (d) Si-H-H线性结构, 以RH–HRSi–H为横纵坐标; 4个图的势能线起始点分别是–6.713, –6.713, –4.008, –4.084 eV, 等高线增量为0.1 eV

    Fig. 1.  Equipotential contour plot for SiH2: (a) Contour plot for bond stretching as a function of the product Jacobi coordinates RH–SiH and RSi–H with the Jacobi angle γ = 91.5°; (b) as a function of the reactant Jacobi coordinates RSi—HH and RHH with the Jacobi angle γ = 90°; (c) linear H-Si-H geometry, using RSi–H and RSi–H as the horizontal and vertical coordinates; (d) linear Si-H-H geometry, using RH–H and RSi–H as the horizontal and vertical coordinates; the contour increments are 0.1 eV, and the four panels starting from –6.713, –6.713, –4.008, –4.084 eV.

    图 2  最小能量路径, ∠[H-H-Si]分别为30°, 60°, 90°, 120°, 150°, 180°

    Fig. 2.  The MEP of different approaching angles, ∠[H-H-Si] = 30°, 60°, 90°, 120°, 150°, 180° for the title reaction.

    图 3  $ \text{H}({}^{2}\text{S})+\text{SiH}({\text{X}}^{2}\Pi )(\nu = 0, j = 0) $反应不同总角动量量子数(J = 0, 10, 20, 30, 40, 50, 60, 70)对应的反应概率随着能量的变化

    Fig. 3.  The reaction probabilities of CC and CS calculations for $ \text{H}({}^{2}\text{S})+\text{SiH}({\text{X}}^{2}\Pi ) $ $ (\nu = 0, j = 0) $reaction at J = 5, 10, 20, 30, 40, 50, 70.

    图 4  在不同能量Ec = 0.06, 0.50, 0.99 eV, 分波对于积分散射截面的贡献 (a) CS分波贡献; (b) CC分波贡献

    Fig. 4.  Partial wave contributions to the integral cross section at Ec = 0.06, 0.50, 0.99 eV: (a) CS; (b) CC.

    图 5  在$ 1.0 \times {10^{ - 3}} $—1.0 eV的碰撞能量范围下, H+ SiH反应ICS随着碰撞能量的变化

    Fig. 5.  The ICSs of CS and CC calculations for H+ SiH reaction versus collision energy of $ 1.0 \times {10^{ - 3}} $–1.0 eV.

    图 6  H+SiH反应阿伦尼乌斯曲线

    Fig. 6.  Arrehenius plot of reaction of H+SiH.

    表 1  波包计算中的数值参量(采用原子单位a.u., 特殊情况另外注明)

    Table 1.  Model parameters of wave packet calculation (The atomic units are used in the calculation unless otherwise stated).

    参量 H+SiH
    散射坐标R的范围 (10–16, 22)
    散射坐标R内格点数 383
    内部坐标r的范围 (0.5, 16)
    内部坐标r内格点数 255
    角度γ范围 (90°, 180°)
    角度格点数 200
    阻尼起点Rd(rd) 18.0(14.0)
    阻尼范围dR(dr) 0.0005(0.001)
    初始波包的中心位置R0 16.0
    初始波包的能量E0/eV 0.15
    初始波包的宽度δ 0.3
    光谱控制 0.1
    流计算的位置rf
    13.8
    传播步数 100000
    下载: 导出CSV
  • [1]

    Power D, Brint P, Spalding T 1984 J. Mol. Struct. 108 81Google Scholar

    [2]

    Kalemos A, Dunning Jr T H, Mavridis A 2004 Mol. Phys. 102 2597Google Scholar

    [3]

    Ball J R, Thomson C 1978 Int. J. Quantum Chem 14 39Google Scholar

    [4]

    Allen W D, Schaefer H F 1986 Chem. Phys. 108 243Google Scholar

    [5]

    Jasinski J M, Chu J O 1988 J. Chem. Phys. 88 1678Google Scholar

    [6]

    Herzberg G, Lagerqvist A, Mckenzie B J 1969 Can. J. Phys. 47 1889Google Scholar

    [7]

    Dubois I, Herzberg G, Verma R D 1967 J. Chem. Phys. 47 4262Google Scholar

    [8]

    Dubois I 1968 Can. J. Phys. 46 2485Google Scholar

    [9]

    Thoman Jr J, Steinfeld J 1986 Chem. Phys. Lett. 124 35Google Scholar

    [10]

    Ishikawa H, Kajimoto O 1991 I. Mol. Spectrosc. 150 610Google Scholar

    [11]

    Hirota E, Ishikawa H 1999 J. Chem. Phys. 110 4254Google Scholar

    [12]

    Yurchenko S N, Bunker P R, Kraemer W P, Jensen P 2004 Can. J. Chem. 82 694Google Scholar

    [13]

    Tokue I, Yamasaki K, Nanbu S 2005 J. Chem. Phys. 122 144307Google Scholar

    [14]

    Tokue I, Yamasaki K, Nanbu S 2006 J. Chem. Phys. 124 114308Google Scholar

    [15]

    Wu Y N, Zhang C F, Ma H T 2017 RSC Adv. 7 12074Google Scholar

    [16]

    Cao J W, Wu Y N, Ma H T, Shen Z T, Bian W S 2021 Phys. Chem. Chem. Phys. 23 6141Google Scholar

    [17]

    Wang H N, Lü Y L, Chen J X, Song Y Z, Zhang C Y, Li Y Q 2022 Phys. Chem. Chem. Phys. 24 7759Google Scholar

    [18]

    Skouteris D, Castillo J F, Manolopoulos D E 2000 Comput. Phys. Commun. 133 128Google Scholar

    [19]

    Bulut N, Castillo J F, Jambrina P G, Kłos J, Roncero O, Aoiz F J, Bañares L 2015 J. Phys. Chem. A 119 11951Google Scholar

    [20]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201Google Scholar

    [21]

    Lagana A, Lendvay G 2005 Theory of Chemical Reaction Dynamics (New York : Springer) p217

    [22]

    Lin S Y, Guo H 2003 J. Chem. Phys. 119 11602Google Scholar

    [23]

    Lin S Y, Guo H 2004 J. Phys. Chem. A 108 2141Google Scholar

    [24]

    Gao F, Wang X L, Zhao W L, Song Y Z, Meng Q T 2018 Eur. Phys. J. D 72 224Google Scholar

    [25]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [26]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [27]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [28]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [29]

    Neuhauser D, Baer M, Judson R S, Kouri D J 1990 J. Chem. Phys. 93 312Google Scholar

    [30]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [31]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [32]

    Zhang L L, Liu D, Yue D G, Song Y Z, Meng Q T 2020 J. Phys. B: At. , Mol. Opt. Phys. 53 095202Google Scholar

    [33]

    Harding L B, Guadagnini R, Schatz G C 1993 J. Phys. Chem. 97 5472Google Scholar

    [34]

    Peng Y, Jiang Z A, Chen J S 2017 J. Phys. Chem. A 121 2209Google Scholar

    [35]

    Peng Y, Zhang H 2022 J. Phys. Chem. A 126 1946Google Scholar

    [36]

    Buren B, Zhang J P, Li Y Q 2024 J. Phys. Chem. A 128 5115Google Scholar

  • [1] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究. 物理学报, 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [2] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究. 物理学报, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [3] 赵文丽, 王永刚, 张路路, 岳大光, 孟庆田. 基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学. 物理学报, 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [4] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究. 物理学报, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [5] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究. 物理学报, 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [6] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [7] 吕子瑶, 潘雨佳, 王长顺. 不同类型偶氮材料光致双折射的温度特性研究. 物理学报, 2017, 66(24): 244203. doi: 10.7498/aps.66.244203
    [8] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究. 物理学报, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [9] 薛思敏. 二重微分散射截面中非一阶效应的理论研究. 物理学报, 2013, 62(16): 163401. doi: 10.7498/aps.62.163401
    [10] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] 沈光先, 汪荣凯, 令狐荣锋, 周勋, 杨向东. He-HD (HT, DT) 非对称碰撞体系振转势能面及微分散射截面的理论计算. 物理学报, 2012, 61(21): 213101. doi: 10.7498/aps.61.213101
    [12] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 钠分子同位素替代对低温下的He-Na2冷碰撞体系转动激发积分散射截面的影响. 物理学报, 2011, 60(2): 020304. doi: 10.7498/aps.60.020304
    [13] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算. 物理学报, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [14] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [15] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [16] 余春日, 凤尔银, 程新路, 杨向东. He-HI复合物势能面及微分散射截面的理论研究. 物理学报, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [17] 张程华, 邱 巍, 辛俊丽, 牛英煜, 王晓伟, 王京阳. 电子碰撞下氢原子单离化反应三重微分散射截面的计算. 物理学报, 2003, 52(10): 2449-2452. doi: 10.7498/aps.52.2449
    [18] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算. 物理学报, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
    [19] 钟志萍, 武淑兰, 徐 征, 朱林繁, 张晓军, 凤任飞, 徐克尊. 一氧化碳分立跃迁的光学振子强度和微分散射截面研究. 物理学报, 1998, 47(3): 419-427. doi: 10.7498/aps.47.419
    [20] 金石琦, 徐至展. e-Ar(3p54s,J=2)的微分散射截面. 物理学报, 1998, 47(10): 1621-1624. doi: 10.7498/aps.47.1621
计量
  • 文章访问数:  406
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-08-12
  • 上网日期:  2024-09-12
  • 刊出日期:  2024-10-20

/

返回文章
返回