搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能重离子碰撞中心快度区鉴别粒子的平均横动量

谢浈 李景行 郑华 张文超 朱励霖 刘星泉 谭志光 周代梅 BonaseraAldo

引用本文:
Citation:

高能重离子碰撞中心快度区鉴别粒子的平均横动量

谢浈, 李景行, 郑华, 张文超, 朱励霖, 刘星泉, 谭志光, 周代梅, BonaseraAldo
cstr: 32037.14.aps.73.20240905

Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions

Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo
cstr: 32037.14.aps.73.20240905
PDF
HTML
导出引用
  • 末态粒子的平均横动量$\langle p_{\mathrm{T}}\rangle$是高能重离子碰撞实验中的一个重要观测量. 它反映了软质强子的特性和热核物质的性质, 对其研究有助于获取碰撞系统的演化信息与规律. 基于相对论重离子对撞机(RHIC)上的STAR、PHENIX实验组和大型强子对撞机(LHC)的ALICE实验组提供的金核-金核(Au+Au)和铅核-铅核(Pb+Pb)碰撞中心快度区实验数据, 唯象公式能很好地描述不同碰撞能量下, 鉴别粒子平均横动量$\langle p_{\mathrm{T}}\rangle$随碰撞中心度、每核子对的平均碰撞次数、每核子对平均产生的带电粒子多重数赝快度密度及每次碰撞平均产生的带电粒子多重数赝快度密度的依赖关系. 结果表明, 鉴别粒子平均横动量$\langle p_{\mathrm{T}}\rangle$与碰撞中心度呈线性关系, 而与每核子对的平均碰撞次数$ {2N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}}$、每核子对平均产生的带电粒子多重数赝快度密度$\dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$及每次碰撞平均产生的带电粒子多重数赝快度密度$\dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$呈幂律关系. 同时, 发现鉴别粒子平均横动量$\langle p_{\mathrm{T}}\rangle$与碰撞中心度以及每核子对的平均碰撞次数唯象公式中的拟合参数与碰撞能量呈现非常好的幂律函数关系. 因此, 碰撞中心度及每核子对的平均碰撞次数是研究鉴别粒子平均横动量的优选物理量. 本文结果可用于对实验上在其他碰撞能量下鉴别粒子平均横动量的预测.
    The average transverse momentum $\left\langle p_{\mathrm{T}} \right\rangle$ of final particles is an important observable in high-energy heavy-ion collision experiments. It reflects the properties of soft hadrons and thermonuclear matter, and it can also be used to deduce the information about the evolution of collision systems. By using the phenomenological linear and power-law functions, we study the dependence of the average transverse momentum $\langle p_{\mathrm{T}}\rangle$ at midrapidity in Au + Au and Pb + Pb collisions from the STAR, PHENIX and ALICE Collaborations on four normalized physical quantities, i.e. the collision centrality, the average number of binary collisions per participant pair $\dfrac{2N_{{\mathrm{coll}}}}{N_{{\mathrm{part}}}}$, the average pseudorapidity density of charged particles per participant pair $\dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$ and the average pseudorapidity density of charged particles per binary collision $\dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $. The results show that the average transverse momentum $\langle p_{\mathrm{T}} \rangle$ of identified particles exhibits a good linear relationship with collision centrality, and it follows a nice power-law relationship with the average number of binary collisions per participant pair $\dfrac{2N_{{\mathrm{coll}}}}{N_{{\mathrm{part}}}}$, the average pseudorapidity density of charged particles per participant pair $\dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$, and the average pseudorapidity density of charged particles per binary collision $\dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$. It is also found that the fitting parameters in the proposed phenomenological functions for the average transverse momentum $\langle p_{\mathrm{T}} \rangle$ with collision centrality and the average number of binary collisions per participant pair follow a power-law function with collision energy, which endows the phenomenological approach with predictive ability. Therefore, the collision centrality and the average number of binary collisions per participant pair are good physical quantities for studying the average transverse momentum of identified particles in high-energy heavy-ion collisions. The results in this study can be used to predict the average transverse momentum of identified particles at other collision energy of which the experimental data are not available so far. The mass ordering of the average transverse momentum of identified particles, i.e. $\text{π}^{-},\;{\mathrm{K}}^{-} $ and $\bar{{\mathrm{p}}}$, is also discussed and explained by the particle production time related to energy conservation, at a given collision centrality and energy.
      通信作者: 郑华, zhengh@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905120)、华中师范大学夸克与轻子物理教育部重点实验室开放基金(批准号: QLPL2024P01)和四川省自然科学基金面上项目(批准号: 2024NSFSC0420)资助的课题.
      Corresponding author: Zheng Hua, zhengh@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905120), the Open Fund of Key Laboratory of Quark and Lepton Physics in Central China Normal University, China (Grant No. QLPL2024P01), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2024NSFSC0420).
    [1]

    Hwa R C, Wang X N 2004 Quark-Gluon Plasma 3 (Singapore: World Scientific

    [2]

    Hwa R C, Wang X N 2010 Quark-Gluon Plasma 4 (Singapore: World Scientific

    [3]

    L P Csernai 1994 Introduction to Relativistic Heavy Ion Collisions (New York: Wiley

    [4]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [5]

    C Y Wong 1994 Introduction to High-Energy Heavy-Ion Collisions (Singapore: World Scientific

    [6]

    Abelev B I, Adams J, Aggarwal M M, et al. 2007 Phys. Rev. C 75 064901Google Scholar

    [7]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Phys. Rev. C 96 044904Google Scholar

    [8]

    Adam J, Adamczyk L, Adams J R, et al. 2020 Phys. Rev. C 101 024905Google Scholar

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. C 79 034909Google Scholar

    [10]

    Abelev B, Adam J, Adamova D, et al. 2013 Phys. Rev. C 88 044910Google Scholar

    [11]

    Acharya S, Adamova D, Adhya S P, et al. 2020 Phys. Rev. C 101 044907Google Scholar

    [12]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [13]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [14]

    Wang M, Tao J Q, Zheng H, Zhang W C, Zhu L L, Bonasera A 2022 Nucl. Sci. Tech. 33 37Google Scholar

    [15]

    Abelev B B, Adam J, Adamova D, et al. 2015 JHEP 2015 190Google Scholar

    [16]

    Adler C, Ahammed Z, Allgower C, et al. 2002 Phys. Rev. Lett. 89 202301Google Scholar

    [17]

    Chatrchyan S, Khachatryan V, Sirunyan A M, et al. 2014 Phys. Rev. C 90 024908Google Scholar

    [18]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [19]

    Cao S S, Wang X N 2021 Rep. Prog. Phys. 84 024301Google Scholar

    [20]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [21]

    Zhang S L, Liao J, Qin G Y, Wang E, Xing H 2023 Sci. Bull. 68 2003Google Scholar

    [22]

    Hwa R C, Zhu L 2018 Phys. Rev. C 97 054908Google Scholar

    [23]

    Zhu L, Zheng H, Da K, Gong H, Ye Z, Liu G, Hwa R C 2023 Phys. Rev. C 107 064907Google Scholar

    [24]

    Zhu L, Zheng H, Kong R 2019 Eur. Phys. J. A 55 205Google Scholar

    [25]

    Tao J Q, Wang M, Zheng H, Zhang W C, Zhu L L, Bonasera A 2021 J. Phys. G 48 105102Google Scholar

    [26]

    Gao Y, Zheng H, Zhu L L, Bonasera A 2017 Eur. Phys. J. A 53 197Google Scholar

    [27]

    Tao J Q, He H B, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 172Google Scholar

    [28]

    Zhu L, Zheng H, Hwa R C 2021 Phys. Rev. C 104 014902Google Scholar

    [29]

    She Z L, Lei A K, Yan Y L, Zhou D M, Zhang W C, Zheng H, Zheng L, Xie Y L, Chen G, Sa B H 2024 Phys. Rev. C 110 014910Google Scholar

    [30]

    Wu W H, Tao J Q, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 151Google Scholar

    [31]

    Zhao W, Zhu L, Zheng H, Ko C M, Song H 2018 Phys. Rev. C 98 054905Google Scholar

    [32]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [33]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [34]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [35]

    Ye K F, Wang Q, Shi J H, Qin Z Y, Zhang W C, Lei A K, She Z L, Yan Y L, Sa B H 2024 Phys. Rev. C 109 035201Google Scholar

    [36]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21Google Scholar

    [37]

    Zheng H, Zhu L 2016 Adv. High Energy Phys. 2016 9632126Google Scholar

    [38]

    Zheng H, Zhu L 2015 Adv. High Energy Phys. 2015 180491Google Scholar

    [39]

    Zheng H, Zhu L, Bonasera A 2015 Phys. Rev. D 92 074009Google Scholar

    [40]

    Zhu L L, Wang B, Wang M, Zheng H 2022 Nucl. Sci. Tech. 33 45Google Scholar

    [41]

    Zhu L L, Zheng H, Yang C B 2008 Nucl. Phys. A 802 122Google Scholar

    [42]

    Tao J, Wu W, Wang M, Zheng H, Zhang W, Zhu L, Bonasera A 2022 Particles 5 146Google Scholar

    [43]

    Wong C Y, Wilk G 2012 Acta Phys. Polon. B 43 2047Google Scholar

    [44]

    Wong C Y, Wilk G, Cirto L J L, Tsallis C 2015 Phys. Rev. D 91 114027Google Scholar

    [45]

    Deppman A, Megias E, Menezes D P 2020 Phys. Rev. D 101 034019Google Scholar

    [46]

    Yang P P, Liu F H, Olimov K K 2023 Entropy 25 1571Google Scholar

    [47]

    Pradhan G S, Sahu D, Rath R, Sahoo R, Cleymans J 2024 Eur. Phys. J. A 60 52Google Scholar

    [48]

    Wu J, Lin Y, Li Z, Luo X, Wu Y 2021 Phys. Rev. C 104 034902Google Scholar

    [49]

    Bernhard J E, Moreland J S, Bass S A 2019 Nat. Phys. 15 1113Google Scholar

    [50]

    He Y Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [51]

    Heffernan M R, Gale C, Jeon S, Paquet J F 2024 Phys. Rev. C 109 065207Google Scholar

    [52]

    Feng Y T, Shao F L, Song J 2022 Phys. Rev. C 106 034910Google Scholar

    [53]

    Van Hove L 1982 Phys. Lett. B 118 138Google Scholar

    [54]

    Olimov K K, Liu F H, Musaev K A, Olimov A K, Tukhtaev B J, Saidkhanov N S, Yuldashev B S, Olimov K, Gulamov K G 2021 Int. J. Mod. Phys. E 30 2150029Google Scholar

    [55]

    Olimov K K, Lebedev I A, Tukhtaev B J, Fedosimova A I, Liu F H, Khudoyberdieva S A, Kanokova S Z 2023 Int. J. Mod. Phys. E 32 2350066Google Scholar

    [56]

    ALICE Publications 2018 https://cds.cern.ch/record/2636623

    [57]

    Aamodt K, Abrahantes Quintana A, Adamova D, et al. 2011 Phys. Rev. Lett. 106 032301Google Scholar

    [58]

    Adam J, Adamova D, Aggarwal M M, et al. 2016 Phys. Rev. Lett. 116 222302Google Scholar

    [59]

    Adare A, Afanasiev S, Aidala C, et al. 2016 Phys. Rev. C 93 024901Google Scholar

  • 图 1  采用线性函数公式(1)对不同碰撞能量下, 中心快度区鉴别粒子的平均横动量$ \langle p_{\mathrm{T}} \rangle $与碰撞中心度关系的拟合结果. 金核-金核碰撞能量为7.7 GeV (a); 11.5 GeV (b); 14.5 GeV (c); 19.6 GeV (d); 27 GeV (e); 39 GeV (f); 62.4 GeV (g); 130 GeV (h); 200 GeV (i). 铅核-铅核碰撞能量为2.76 TeV (j); 5.02 TeV (k). 实验数据来自文献[711]

    Fig. 1.  Linear fits with Eq. (1) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus centrality for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a), 11.5 GeV (b), 14.5 GeV (c), 19.6 GeV (d), 27 GeV (e), 39 GeV (f), 62.4 GeV (g), 130 GeV (h), 200 GeV (i), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (j), 5.02 TeV (k). The experimental data are taken from Refs. [711].

    图 2  (1)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}} \rangle $随碰撞中心度关系的拟合参数 (a) 斜率绝对值$ |a_1 | $; (b) 截距 $ b_1 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Fig. 2.  The collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (1): (a) For the absolute values of slope $ |a_1 | $; (b) for the intercepts $ b_1 $.

    图 3  采用幂律函数公式(2)拟合不同碰撞能量下, 中心快度区鉴别粒子平均横动量$ \langle p_{\mathrm{T}} \rangle $与每核子对的平均碰撞次数关系的拟合结果. 金核-金核碰撞能量为14.5 GeV (a); 62.4 GeV (b); 130 GeV (c); 200 GeV (d). 铅核-铅核碰撞能量为2.76 TeV (e); 5.02 TeV (f). 实验数据来自文献[811, 56]

    Fig. 3.  Power-law fits with Eq. (2) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus $ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a), 62.4 GeV (b), 130 GeV (c), 200 GeV (d), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e), 5.02 TeV (f). The experimental data are taken from Refs. [811, 56].

    图 4  (2)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对的平均碰撞次数关系的拟合参数(a)系数$ a_2 $和(b)指数$ b_2 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Fig. 4.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (2): (a) For the coefficient $ a_2 $; (b) for the power $ b_2 $

    图 5  采用幂律函数公式(3)拟合不同碰撞能量下, 中心快度区的平均横动量$ \langle p_{\mathrm{T}} \rangle $与每核子对平均产生的带电粒子多重数赝快度密度关系的拟合结果. 金核-金核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a); 62.4 GeV (b); 200 GeV (c). 铅核-铅核碰撞能量$ \sqrt{s_{{{\rm NN}}}}= $$ {\rm{2.76\;TeV}}$(d). 实验数据来自文献[711, 5659]

    Fig. 5.  Power-law fits with Eq. (3) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus $ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a), 62.4 GeV (b), 200 GeV (c), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (d). The experimental data are taken from Refs. [711, 5659].

    图 6  (3)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对平均产生的带电粒子多重数赝快度密度的拟合参数(a)系数$ a_3 $和(b)指数$ b_3 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Fig. 6.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (3): (a) For the coefficient $ a_3 $; (b) for the power $ b_3 $

    图 7  采用幂律函数公式(4)拟合不同碰撞能量下, 中心快度区的平均横动量$ \langle p_{\mathrm{T}}\rangle $与每次碰撞平均产生的带电粒子多重数赝快度密度关系的拟合结果. 金核-金核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a); 62.4 GeV (b); 130 GeV (c); 200 GeV (d). 铅核-铅核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e); 5.02 TeV (f). 实验数据来自文献[811, 5659]

    Fig. 7.  Power-law fits with Eq. (4) to the experimental midrapidity $ \langle p_{\mathrm{T}}\rangle $ versus $ \frac{1}{N_{{\mathrm{coll}}}}\frac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a), 62.4 GeV (b), 130 GeV (c), 200 GeV (d), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e), 5.02 TeV (f). The experimental data are taken from Refs. [811, 5659].

    图 8  (4)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每次碰撞平均产生的带电粒子多重数赝快度密度的拟合参数(a)系数$ a_4 $和(b)指数$ b_4 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Fig. 8.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (4): (a) For the coefficient $ a_4 $; (b) for the power $ b_4 $

    表 A1  (1)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $与碰撞中心度C关系的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A1.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus centrality for the identified particles from Eq. (1) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 截距$ b_1 /(\mathrm{GeV}\cdot c^{-1}) $ 斜率$ a_1 /(\mathrm{GeV}\cdot c^{-1}) $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.382\pm 0.011 $ $ -7.01\times10^{-4} \pm 2.47\times10^{-4} $ 0.311/7
    Au+Au, 7.7 GeV $ {\mathrm{K}}^{-} $ $ 0.545 \pm 0.013 $ $ -1.59\times10^{-3}\pm 2.72\times10^{-4} $ 0.337/7
    $ \bar{{\mathrm{p}}} $ $ 0.794\pm 0.030 $ $ -4.05\times10^{-3} \pm 6.07\times10^{-4} $ 0.211/7
    $ \text{π}^{-} $ $ 0.388\pm 0.011 $ $ -5.39\times10^{-4} \pm 2.50\times10^{-4} $ 0.397/7
    Au+Au, 11.5 GeV $ {\mathrm{K}}^{-} $ $ 0.566 \pm 0.016 $ $ -1.46\times10^{-3}\pm 3.47\times10^{-4} $ 0.531/7
    $ \bar{{\mathrm{p}}} $ $ 0.815\pm0.036 $ $ -3.87\times10^{-3} \pm 7.24\times10^{-4} $ 0.097/7
    $ \text{π}^{-} $ $ 0.397\pm 0.012 $ $ -6.19\times10^{-4} \pm 2.69\times10^{-4} $ 0.238/7
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.572 \pm 0.018 $ $ -1.44\times10^{-3}\pm 3.79\times10^{-4} $ 0.323/7
    $ \bar{{\mathrm{p}}} $ $ 0.827\pm0.039 $ $ -3.37\times10^{-3} \pm 8.04\times10^{-4} $ 0.122/7
    $ \text{π}^{-} $ $ 0.398\pm 0.014 $ $ -5.08\times10^{-4} \pm 3.12\times10^{-4} $ 0.195/7
    Au+Au, 19.6 GeV $ {\mathrm{K}}^{-} $ $ 0.578 \pm 0.020 $ $ -1.42\times10^{-3}\pm 4.30\times10^{-4} $ 0.149/7
    $ \bar{{\mathrm{p}}} $ $ 0.845\pm0.042 $ $ -3.55\times10^{-3} \pm 8.64\times10^{-4} $ 0.066/7
    $ \text{π}^{-} $ $ 0.410\pm 0.014 $ $ -6.08\times10^{-4} \pm 3.19\times10^{-4} $ 0.093/7
    Au+Au, 27 GeV $ {\mathrm{K}}^{-} $ $ 0.588 \pm 0.020 $ $ -1.24\times10^{-3}\pm 4.48\times10^{-4} $ 0.179/7
    $ \bar{{\mathrm{p}}} $ $ 0.857\pm0.043 $ $ -3.52\times10^{-3} \pm 8.81\times10^{-4} $ 0.134/7
    $ \text{π}^{-} $ $ 0.417\pm 0.015 $ $ -5.84\times10^{-4} \pm3.25\times10^{-4} $ 0.151/7
    Au+Au, 39 GeV $ {\mathrm{K}}^{-} $ $ 0.615 \pm 0.021 $ $ -1.22\times10^{-3}\pm 4.71\times10^{-4} $ 0.138/7
    $ \bar{{\mathrm{p}}} $ $ 0.882\pm 0.054 $ $ -3.46\times10^{-3} \pm 1.11\times10^{-3} $ 0.091/7
    $ \text{π}^{-} $ $ 0.409\pm 0.007 $ $ -5.46\times10^{-4} \pm 2.11\times10^{-4} $ 0.755/7
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.663\pm0.016 $ $ -1.80\times10^{-3}\pm 3.20\times10^{-4} $ 0.712/7
    $ \bar{{\mathrm{p}}} $ $ 0.984\pm 0.025 $ $ -3.87\times10^{-3} \pm 5.46\times10^{-4} $ 0.501/7
    $ \text{π}^{-} $ $ 0.400\pm0.009 $ $ -6.57\times10^{-4} \pm 3.24\times10^{-4} $ 0.384/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.666 \pm 0.020 $ $ -1.54\times10^{-3} \pm 4.19\times10^{-4} $ 0.478/6
    $ \bar{{\mathrm{p}}} $ $ 1.01\pm 0.042 $ $ -3.77\times10^{-3}\pm8.05\times10^{-4} $ 0.275/6
    $ \text{π}^{-} $ $ 0.427\pm0.012 $ $ -7.75\times10^{-4} \pm 2.73\times10^{-4} $ 0.234/7
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.720\pm0.033 $ $ -2.18 \times10^{-3} \pm 6.49\times10^{-4} $ 0.145/7
    $ \bar{{\mathrm{p}}} $ $ 1.10\pm0.050 $ $ -4.58\times10^{-3}\pm 9.55\times10^{-4} $ 0.222/7
    $ \text{π}^{-} $ $ 0.532\pm0.010 $ $ -9.28\times10^{-4} \pm 2.34\times10^{-4} $ 1.099/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.886 \pm 0.017 $ $ -1.95\times10^{-3} \pm 3.80\times10^{-4} $ 0.960/7
    $ \bar{{\mathrm{p}}} $ $ 1.40\pm 0.020 $ $ -5.26\times10^{-3}\pm 4.58\times10^{-4} $ 3.124/7
    $ \text{π}^{-} $ $ 0.586\pm0.012 $ $ -1.16\times10^{-3} \pm 2.88\times10^{-4} $ 0.707/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.943 \pm 0.008 $ $ -1.84\times10^{-3} \pm 1.93\times10^{-4} $ 6.723/7
    $ \bar{{\mathrm{p}}} $ $ 1.50\pm 0.013 $ $ -5.97\times10^{-3}\pm 2.91\times10^{-4} $ 12.752/7
    下载: 导出CSV

    表 A2  (2)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $与每核子对的平均碰撞次数$ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $关系的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A2.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $ for the identified particles from Eq. (2) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_2/(\mathrm{GeV}\cdot c^{-1})$ 指数$ b_2 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.330\pm0.019 $ $ 0.118\pm 0.049 $ 0.180/7
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.418\pm0.025 $ $ 0.198\pm 0.052 $ 0.235/7
    $ \bar{{\mathrm{p}}} $ $ 0.482\pm 0.045 $ $ 0.343\pm 0.082 $ 0.110/7
    $ \text{π}^{-} $ $ 0.344\pm0.019 $ $ 0.104\pm 0.040 $ 0.519/7
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.462\pm0.021 $ $ 0.214\pm 0.038 $ 0.413/7
    $ \bar{{\mathrm{p}}} $ $ 0.566\pm 0.034 $ $ 0.330\pm 0.047 $ 0.352/7
    $ \text{π}^{-} $ $ 0.318\pm0.032 $ $ 0.132\pm 0.066 $ 0.375/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.481\pm 0.033 $ $ 0.186 \pm0.051 $ 0.448/6
    $ \bar{{\mathrm{p}}} $ $ 0.583\pm 0.049 $ $ 0.318\pm 0.067 $ 0.215/6
    $ \text{π}^{-} $ $ 0.338\pm0.020 $ $ 0.128 \pm 0.045 $ 0.149/7
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.482\pm0.038 $ $ 0.221\pm 0.065 $ 0.184/7
    $ \bar{{\mathrm{p}}} $ $ 0.617\pm 0.050 $ $ 0.322 \pm 0.066 $ 0.304/7
    $ \text{π}^{-} $ $ 0.430\pm0.017 $ $ 0.096 \pm 0.024 $ 0.623/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.674 \pm 0.027 $ $ 0.124 \pm 0.024 $ 0.527/7
    $ \bar{{\mathrm{p}}} $ $ 0.848\pm 0.029 $ $ 0.227\pm 0.020 $ 1.731/7
    $ \text{π}^{-} $ $ 0.460\pm 0.020 $ $ 0.105\pm 0.026 $ 0.405/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.741 \pm 0.014 $ $ 0.105\pm 0.011 $ 3.765/7
    $ \bar{{\mathrm{p}}} $ $ 0.889\pm 0.017 $ $ 0.230\pm 0.011 $ 7.564/7
    下载: 导出CSV

    表 A3  (3)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对平均产生的带电粒子多重数赝快度密度$ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A3.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles from Eq. (3) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_3 /(\mathrm{GeV}\cdot c^{-1})$ 指数$ b_3 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.366\pm0.007 $ $ 0.220\pm 0.142 $ 0.263/5
    Au+Au, 7.7 GeV $ {\mathrm{K}}^{-} $ $ 0.509\pm 0.008 $ $ 0.418\pm 0.117 $ 0.551/5
    $ \bar{{\mathrm{p}}} $ $ 0.700\pm 0.019 $ $ 0.828 \pm 0.200 $ 0.548/5
    $ \text{π}^{-} $ $ 0.366\pm0.01 $6 $ 0.195\pm 0.170 $ 0.063/5
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.494\pm 0.022 $ $ 0.361\pm 0.174 $ 0.237/5
    $ \bar{{\mathrm{p}}} $ $ 0.631\pm 0.044 $ $ 0.689 \pm 0.269 $ 0.235/5
    $ \text{π}^{-} $ $ 0.351\pm0.047 $ $ 0.232\pm 0.299 $ 0.105/5
    Au+Au, 19.6 GeV $ {\mathrm{K}}^{-} $ $ 0.427\pm 0.057 $ $ 0.590\pm 0.304 $ 0.462/5
    $ \bar{{\mathrm{p}}} $ $ 0.473\pm 0.093 $ $ 1.15 \pm 0.465 $ 0.621/5
    $ \text{π}^{-} $ $ 0.346\pm0.045 $ $ 0.261\pm 0.254 $ 0.081/5
    Au+Au, 27 GeV $ {\mathrm{K}}^{-} $ $ 0.460\pm0.060 $ $ 0.378\pm 0.254 $ 0.123/5
    $ \bar{{\mathrm{p}}} $ $ 0.489\pm 0.094 $ $ 0.893 \pm 0.371 $ 0.245/5
    $ \text{π}^{-} $ $ 0.333\pm0.070 $ $ 0.290\pm 0.309 $ 0.083/5
    Au+Au, 39 GeV $ {\mathrm{K}}^{-} $ $ 0.428\pm 0.090 $ $ 0.472\pm 0.315 $ 0.146/5
    $ \bar{{\mathrm{p}}} $ $ 0.405\pm 0.153 $ $ 1.02 \pm 0.546 $ 0.142/5
    $ \text{π}^{-} $ $ 0.317\pm0.038 $ $ 0.260\pm 0.136 $ 0.331/6
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.357\pm 0.036 $ $ 0.644\pm 0.127 $ 0.662/6
    $ \bar{{\mathrm{p}}} $ $ 0.379\pm 0.050 $ $ 0.997 \pm 0.158 $ 0.507/6
    $ \text{π}^{-} $ $ 0.290\pm0.042 $ $ 0.257\pm 0.127 $ 0.356/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.410\pm 0.045 $ $ 0.388\pm 0.105 $ 0.452/6
    $ \bar{{\mathrm{p}}} $ $ 0.440\pm 0.062 $ $ 0.674 \pm 0.142 $ 0.481/6
    $ \text{π}^{-} $ $ 0.266\pm0.056 $ $ 0.344 \pm 0.171 $ 0.278/6
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.286\pm0.087 $ $ 0.683\pm 0.247 $ 0.190/6
    $ \bar{{\mathrm{p}}} $ $ 0.291\pm 0.089 $ $ 0.989 \pm0.259 $ 0.383/6
    $ \text{π}^{-} $ $ 0.325\pm 0.036 $ $ 0.230 \pm 0.058 $ 0.862/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.471\pm0.052 $ $ 0.295\pm 0.058 $ 1.182/7
    $ \bar{{\mathrm{p}}} $ $ 0.442\pm0.041 $ $ 0.538\pm 0.048 $ 3.699/7
    $ \text{π}^{-} $ $ 0.305\pm0.045 $ $ 0.282\pm 0.071 $ 0.924/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.502\pm 0.030 $ $ 0.272\pm 0.029 $ 8.162/7
    $ \bar{{\mathrm{p}}} $ $ 0.373\pm0.023 $ $ 0.602\pm 0.030 $ 20.985/7
    下载: 导出CSV

    表 A4  (4)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每次碰撞平均产生的带电粒子多重数赝快度密度$ \dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A4.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ \dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles from Eq. (4) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_4 /(\mathrm{GeV}\cdot c^{-1}) $ 指数$ b_4 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.326\pm 0.044 $ $ -0.156\pm 0.128 $ 0.001/5
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.400\pm0.056 $ $ -0.290\pm 0.137 $ 0.026/5
    $ \bar{{\mathrm{p}}} $ $ 0.425\pm0.094 $ $ -0.547\pm 0.211 $ 0.052/5
    $ \text{π}^{-} $ $ 0.357\pm0.021 $ $ -0.185\pm 0.098 $ 0.411/6
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.484\pm0.021 $ $ -0.424\pm 0.086 $ 1.108/6
    $ \bar{{\mathrm{p}}} $ $ 0.606\pm 0.036 $ $ -0.674 \pm 0.109 $ 1.402/6
    $ \text{π}^{-} $ $ 0.331\pm0.026 $ $ -0.391 \pm 0.190 $ 0.347/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.519\pm0.025 $ $ -0.503\pm 0.137 $ 0.720/6
    $ \bar{{\mathrm{p}}} $ $ 0.665\pm 0.038 $ $ -0.850\pm 0.181 $ 0.384/6
    $ \text{π}^{-} $ $ 0.381\pm0.013 $ $ -0.251 \pm 0.124 $ 0.053/6
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.589\pm0.023 $ $ -0.430\pm 0.170 $ 0.420/6
    $ \bar{{\mathrm{p}}} $ $ 0.826\pm 0.033 $ $ -0.627\pm 0.174 $ 0.704/6
    $ \text{π}^{-} $ $ 0.526\pm 0.009 $ $ -0.171\pm 0.042 $ 0.511/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.874 \pm0.015 $ $ -0.221 \pm 0.043 $ 0.353/7
    $ \bar{{\mathrm{p}}} $ $ 1.36 \pm 0.018 $ $ -0.402\pm 0.036 $ 1.187/7
    $ \text{π}^{-} $ $ 0.587\pm 0.013 $ $ -0.167\pm 0.041 $ 0.204/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.946\pm 0.008 $ $ -0.169\pm 0.018 $ 1.997/7
    $ \bar{{\mathrm{p}}} $ $ 1.52\pm 0.014 $ $ -0.369\pm 0.018 $ 2.886/7
    下载: 导出CSV
  • [1]

    Hwa R C, Wang X N 2004 Quark-Gluon Plasma 3 (Singapore: World Scientific

    [2]

    Hwa R C, Wang X N 2010 Quark-Gluon Plasma 4 (Singapore: World Scientific

    [3]

    L P Csernai 1994 Introduction to Relativistic Heavy Ion Collisions (New York: Wiley

    [4]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [5]

    C Y Wong 1994 Introduction to High-Energy Heavy-Ion Collisions (Singapore: World Scientific

    [6]

    Abelev B I, Adams J, Aggarwal M M, et al. 2007 Phys. Rev. C 75 064901Google Scholar

    [7]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Phys. Rev. C 96 044904Google Scholar

    [8]

    Adam J, Adamczyk L, Adams J R, et al. 2020 Phys. Rev. C 101 024905Google Scholar

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. C 79 034909Google Scholar

    [10]

    Abelev B, Adam J, Adamova D, et al. 2013 Phys. Rev. C 88 044910Google Scholar

    [11]

    Acharya S, Adamova D, Adhya S P, et al. 2020 Phys. Rev. C 101 044907Google Scholar

    [12]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [13]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [14]

    Wang M, Tao J Q, Zheng H, Zhang W C, Zhu L L, Bonasera A 2022 Nucl. Sci. Tech. 33 37Google Scholar

    [15]

    Abelev B B, Adam J, Adamova D, et al. 2015 JHEP 2015 190Google Scholar

    [16]

    Adler C, Ahammed Z, Allgower C, et al. 2002 Phys. Rev. Lett. 89 202301Google Scholar

    [17]

    Chatrchyan S, Khachatryan V, Sirunyan A M, et al. 2014 Phys. Rev. C 90 024908Google Scholar

    [18]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [19]

    Cao S S, Wang X N 2021 Rep. Prog. Phys. 84 024301Google Scholar

    [20]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [21]

    Zhang S L, Liao J, Qin G Y, Wang E, Xing H 2023 Sci. Bull. 68 2003Google Scholar

    [22]

    Hwa R C, Zhu L 2018 Phys. Rev. C 97 054908Google Scholar

    [23]

    Zhu L, Zheng H, Da K, Gong H, Ye Z, Liu G, Hwa R C 2023 Phys. Rev. C 107 064907Google Scholar

    [24]

    Zhu L, Zheng H, Kong R 2019 Eur. Phys. J. A 55 205Google Scholar

    [25]

    Tao J Q, Wang M, Zheng H, Zhang W C, Zhu L L, Bonasera A 2021 J. Phys. G 48 105102Google Scholar

    [26]

    Gao Y, Zheng H, Zhu L L, Bonasera A 2017 Eur. Phys. J. A 53 197Google Scholar

    [27]

    Tao J Q, He H B, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 172Google Scholar

    [28]

    Zhu L, Zheng H, Hwa R C 2021 Phys. Rev. C 104 014902Google Scholar

    [29]

    She Z L, Lei A K, Yan Y L, Zhou D M, Zhang W C, Zheng H, Zheng L, Xie Y L, Chen G, Sa B H 2024 Phys. Rev. C 110 014910Google Scholar

    [30]

    Wu W H, Tao J Q, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 151Google Scholar

    [31]

    Zhao W, Zhu L, Zheng H, Ko C M, Song H 2018 Phys. Rev. C 98 054905Google Scholar

    [32]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [33]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [34]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [35]

    Ye K F, Wang Q, Shi J H, Qin Z Y, Zhang W C, Lei A K, She Z L, Yan Y L, Sa B H 2024 Phys. Rev. C 109 035201Google Scholar

    [36]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21Google Scholar

    [37]

    Zheng H, Zhu L 2016 Adv. High Energy Phys. 2016 9632126Google Scholar

    [38]

    Zheng H, Zhu L 2015 Adv. High Energy Phys. 2015 180491Google Scholar

    [39]

    Zheng H, Zhu L, Bonasera A 2015 Phys. Rev. D 92 074009Google Scholar

    [40]

    Zhu L L, Wang B, Wang M, Zheng H 2022 Nucl. Sci. Tech. 33 45Google Scholar

    [41]

    Zhu L L, Zheng H, Yang C B 2008 Nucl. Phys. A 802 122Google Scholar

    [42]

    Tao J, Wu W, Wang M, Zheng H, Zhang W, Zhu L, Bonasera A 2022 Particles 5 146Google Scholar

    [43]

    Wong C Y, Wilk G 2012 Acta Phys. Polon. B 43 2047Google Scholar

    [44]

    Wong C Y, Wilk G, Cirto L J L, Tsallis C 2015 Phys. Rev. D 91 114027Google Scholar

    [45]

    Deppman A, Megias E, Menezes D P 2020 Phys. Rev. D 101 034019Google Scholar

    [46]

    Yang P P, Liu F H, Olimov K K 2023 Entropy 25 1571Google Scholar

    [47]

    Pradhan G S, Sahu D, Rath R, Sahoo R, Cleymans J 2024 Eur. Phys. J. A 60 52Google Scholar

    [48]

    Wu J, Lin Y, Li Z, Luo X, Wu Y 2021 Phys. Rev. C 104 034902Google Scholar

    [49]

    Bernhard J E, Moreland J S, Bass S A 2019 Nat. Phys. 15 1113Google Scholar

    [50]

    He Y Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [51]

    Heffernan M R, Gale C, Jeon S, Paquet J F 2024 Phys. Rev. C 109 065207Google Scholar

    [52]

    Feng Y T, Shao F L, Song J 2022 Phys. Rev. C 106 034910Google Scholar

    [53]

    Van Hove L 1982 Phys. Lett. B 118 138Google Scholar

    [54]

    Olimov K K, Liu F H, Musaev K A, Olimov A K, Tukhtaev B J, Saidkhanov N S, Yuldashev B S, Olimov K, Gulamov K G 2021 Int. J. Mod. Phys. E 30 2150029Google Scholar

    [55]

    Olimov K K, Lebedev I A, Tukhtaev B J, Fedosimova A I, Liu F H, Khudoyberdieva S A, Kanokova S Z 2023 Int. J. Mod. Phys. E 32 2350066Google Scholar

    [56]

    ALICE Publications 2018 https://cds.cern.ch/record/2636623

    [57]

    Aamodt K, Abrahantes Quintana A, Adamova D, et al. 2011 Phys. Rev. Lett. 106 032301Google Scholar

    [58]

    Adam J, Adamova D, Aggarwal M M, et al. 2016 Phys. Rev. Lett. 116 222302Google Scholar

    [59]

    Adare A, Afanasiev S, Aidala C, et al. 2016 Phys. Rev. C 93 024901Google Scholar

  • [1] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [2] 林树, 田家源. 引力形状因子的介质修正. 物理学报, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [3] 盛欣力, 梁作堂, 王群. 重离子碰撞中的矢量介子自旋排列. 物理学报, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [4] 孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华. 重离子碰撞中QCD物质整体极化的实验测量. 物理学报, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [5] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [6] 刘建业, 郝焕锋, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的介质效应. 物理学报, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [7] 姜志进. 高能重离子碰撞中的参与者数和核子-核子碰撞数. 物理学报, 2007, 56(9): 5191-5195. doi: 10.7498/aps.56.5191
    [8] 卞宝安, 周宏余, 张丰收. 核物质对称能和重离子碰撞中径向流阈能的同位旋效应. 物理学报, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [9] 李 强, 姜志进, 夏宏福. 高能重离子碰撞中的J/ψ反常抑制现象. 物理学报, 2006, 55(10): 5161-5165. doi: 10.7498/aps.55.5161
    [10] 张 芳, 左 维, 雍高产. 利用中-质微分流探测对称能的高密行为. 物理学报, 2006, 55(11): 5769-5773. doi: 10.7498/aps.55.5769
    [11] 刘建业, 邢永忠, 郭文军. 同位旋依赖的动量相关作用对同位旋分馏的影响随入射道条件的演化. 物理学报, 2006, 55(1): 91-97. doi: 10.7498/aps.55.91
    [12] 刘建业, 郭文军, 邢永忠, 李希国, 左 维. 中能重离子碰撞中晕核反应动力学. 物理学报, 2006, 55(3): 1068-1076. doi: 10.7498/aps.55.1068
    [13] 雍高产, 李宝安, 陈列文, 左 维. 重离子碰撞中的对称势翻转. 物理学报, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [14] 宁 烨, 何 斌, 刘春雷, 颜 君, 王建国. He2+离子与H原子的重粒子碰撞电离过程. 物理学报, 2005, 54(7): 3075-3081. doi: 10.7498/aps.54.3075
    [15] 邢永忠, 刘建业, 郭文军, 郝焕锋. 中能重离子碰撞中库仑相互作用对动量耗散的同位旋效应. 物理学报, 2005, 54(4): 1538-1542. doi: 10.7498/aps.54.1538
    [16] 郭文军, 刘建业, 邢永忠. 同位旋依赖的动量相关作用对同位旋分馏过程的影响和机理. 物理学报, 2005, 54(7): 3082-3086. doi: 10.7498/aps.54.3082
    [17] 邢永忠, 刘建业, 郭文军, 方玉田. 重离子碰撞中同位旋分馏对碰撞系统同位旋的依赖性. 物理学报, 2004, 53(7): 2106-2111. doi: 10.7498/aps.53.2106
    [18] 姜志进. 带电多重数赝快度密度对碰撞对心度依赖关系研究. 物理学报, 2004, 53(4): 1020-1022. doi: 10.7498/aps.53.1020
    [19] 钱兴, 江栋兴, 林俊松, 刘大鸣, 李泽. 离线γ技术测量重离子熔合复合核平均角动量. 物理学报, 1996, 45(5): 754-759. doi: 10.7498/aps.45.754
    [20] 王克明, 时伯荣, 曲保东, 王忠烈. MeV重离子在固体靶中的平均投影射程计算. 物理学报, 1992, 41(11): 1820-1824. doi: 10.7498/aps.41.1820
计量
  • 文章访问数:  1498
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 修回日期:  2024-07-22
  • 上网日期:  2024-08-09
  • 刊出日期:  2024-09-20

/

返回文章
返回