搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性磁电层合材料的对称等效电路理论及数值仿真分析

张小丽 殷秋鹏 李果 姚曦 丁礼磊

引用本文:
Citation:

非线性磁电层合材料的对称等效电路理论及数值仿真分析

张小丽, 殷秋鹏, 李果, 姚曦, 丁礼磊
cstr: 32037.14.aps.73.20240934

Symmetric equivalent circuit theory and numerical simulation analysis of nonlinear magnetoelectric laminated composite

Zhang Xiao-Li, Yin Qiu-Peng, Li Guo, Yao Xi, Ding Li-Lei
cstr: 32037.14.aps.73.20240934
PDF
HTML
导出引用
  • 本文研究了长度方向磁化、厚度方向极化的3层磁电复合材料的非线性特性. 首先, 基于Z-L模型, 根据磁化强度的数值解特征, 拟合了磁化强度函数, 进一步推导了超磁致伸缩材料的动态参数, 如动态压磁系数、动态弹性柔顺系数和动态磁导率, 并分析了偏置磁场和预应力对相应参数的影响; 其次, 基于非线性磁致伸缩本构方程, 建立了磁电层合材料的对称磁-弹-电等效电路模型, 并推导了磁电系数表达式, 分析了其随偏置磁场和预应力的变化曲线, 与已报道的结果具有很好的一致性; 最后, 为了与理论结果进行比较, 采用COMSOL软件设置相同的参数, 绘制相应的磁电系数频率曲线, 二者结果符合较好, 并提取了最大峰值模态振动形状, 可以方便地观察到磁电层合材料长度方向的振动情况. 结果表明, 这种对称磁-弹-电等效电路理论模型及使用COMSOL软件数值模拟的方法是可取的, 为进一步进行磁电层合材料的非线性分析奠定了基础, 使设计高精度磁电微型器件成为可能.
    In order to further study the nonlinear characteristics of the resonance magnetoelectric coefficient and vibration mode at the resonance frequency, three-layer magnetoelectric composite with length direction magnetization and thickness direction polarization is investigated in the article. Firstly, based on the Z-L model and the numerical solution characteristics of magnetization intensity, the magnetization intensity function is fitted, and the dynamic parameters of the giant magnetostrictive material, including dynamic piezomagnetic coefficient, dynamic elastic compliance coefficient, and dynamic magnetic permeability, are further derived. The effects of bias magnetic field and prestress on the corresponding composite are analyzed. Secondly, based on the nonlinear magnetostrictive constitutive equation, a symmetric magneto-elastic-electric equivalent circuit model of magnetoelectric laminate composite is established, and the expression of magnetoelectric coefficient is derived. The variation curve with bias magnetic field and prestress is analyzed, which is consistent with the conclusions of existing literature [Zhou H M, Ou X W, Xiao Y, Qu S X, Wu H P 2013 Smart Mater. Struct. 22 035018; Zhou H M, Li C, Xuan L M, Wei J 2011 Smart Mater. Struct. 20 035001]. Finally, in order to compare with the theoretical results, the same parameters are set by using COMSOL software, and the corresponding magnetoelectric coefficient frequency curve is plotted. The two results are in good agreement with each other, and the maximum peak modal vibration shape is extracted, making it easy to observe the vibration of the magneto electric laminated composite in the length direction. The results indicate that the theoretical model of this symmetric magneto-elastic-electric equivalent circuit and the numerical simulation method using COMSOL software are feasible, thereby laying the foundation for further nonlinear analysis of magnetoelectric laminate composite and making it possible to design high-precision magnetoelectric micro devices.
      通信作者: 张小丽, zxlxlzhang@163.com
    • 基金项目: 国家自然科学基金(批准号: 12174004, 12104369)、甘肃省自然科学基金(批准号: 23JRRA1805)和陕西省教育厅科学研究计划(批准号: 20JK0475)资助的课题.
      Corresponding author: Zhang Xiao-Li, zxlxlzhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174004, 12104369), the Natural Science Foundation of Gansu Province, China (Grant No. 23JRRA1805), and the Scientific Research Program of Shaanxi Provincial Department of Education, China (Grant No. 20JK0475).
    [1]

    谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立 2023 物理学报 72 117501Google Scholar

    Xie B H, Xu G K, Xiao S Q, Yu Z J, Zhu D L 2023 Acta Phys. Sin. 72 117501Google Scholar

    [2]

    Truong B D 2020 IEEE Sens. J. 20 2967808Google Scholar

    [3]

    Han J, Zhang J J, Gao Y W 2018 J. Magn. Magn. Mater. 466 200Google Scholar

    [4]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [5]

    Zhang X L, Zhou J P, Yao X, Yang Z P, Zhang G B 2020 J. Magn. Magn. Mater. 501 166411Google Scholar

    [6]

    Zheng X J, Sun L 2006 J. Appl. Phys. 100 063906

    [7]

    Lin L Z, Wan Y P, Li F X 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 7 1568

    [8]

    Zhou H M, Ou X W, Xiao Y, Qu S X, Wu H P 2013 Smart Mater. Struct. 22 035018Google Scholar

    [9]

    Zhou H M, Li C, Xuan L M, Wei J 2011 Smart Mater. Struct. 20 035001Google Scholar

    [10]

    Liang Y R, Zheng X J 2007 Acta Mech. Solida Sin. 20 283Google Scholar

    [11]

    Moffett M B, Linberg J, Mclaughlin E A 1991 J. Acoust. Soc. Am. 89 1448Google Scholar

    [12]

    Zheng X J, Liu X E 2005 J. Appl. Phys. 97 053901Google Scholar

    [13]

    Zhou H M, Cui X L 2014 Smart Mater. Struct. 23 105104

    [14]

    Shi Y, 2018 Compos. Struct. 185 474Google Scholar

    [15]

    Li J Z, Wen Y M, Li P, Yang J 2017 IEEE Trans. Power Electr. 53 2500406

    [16]

    Muchenik T I, Barbero E J 2015 Smart Mater. Struct. 24 025039Google Scholar

    [17]

    Zhou J P, Yang Y, Zhang G B, Peng J H, Liu P 2016 Compos. Struct. 155 107Google Scholar

    [18]

    Zhang X L, Zhou J P, Yao X, Yang Z P, Zhang G B 2019 AIP Adv. 9 105315Google Scholar

    [19]

    卞雷祥, 文玉梅, 李平 2009 物理学报 58 4205Google Scholar

    Bian L X, Wen Y M, Li P 2009 Acta Phys. Sin. 58 4205Google Scholar

    [20]

    Zhou H M, Xuan L M, Li C, Wei J 2011 J. Magn. Magn. Mater. 323 2802

    [21]

    Boukazouha F, Poulin-Vittrant G, Tran-Huu-Hue L P, Bavencoffe M, Boubenider F 2015 Ultrasonics 60 41Google Scholar

    [22]

    Malleron K, Talleb H, Gensbittel A, Ren Z 2017 IEEE Trans. Magn. 53 8102104

    [23]

    Fu X, Gou Y 2022 Appl. Acoust. 193 108752Google Scholar

    [24]

    Zhang X L, Yin Q P, Li G, Yao X 2022 J. Magn. Magn. Mater. 564 170112

  • 图 1  磁电层状复合材料的结构示意图

    Fig. 1.  Structural schematic diagram of magnetoelectric laminated composite.

    图 2  磁化强度随偏置磁场和预应力的变化曲线

    Fig. 2.  Curves of magnetization intensity versus bias magnetic field and prestress.

    图 3  磁化强度拟合函数随偏置磁场和预应力的变化曲线

    Fig. 3.  Curves of magnetization intensity fitting function versus bias magnetic field and prestress.

    图 4  不同预应力下, 压磁系数随偏置磁场的变化曲线

    Fig. 4.  Curves of piezomagnetic coefficient versus bias magnetic field under different prestress.

    图 6  不同预应力下, 磁导率随偏置磁场的变化曲线

    Fig. 6.  Curves of piezomagnetic coefficient versus bias magnetic field under different prestress.

    图 5  不同偏置磁场下, 弹性柔顺系数随预应力的变化曲线

    Fig. 5.  Curves of elastic compliance coefficient versus prestress under different bias magnetic field.

    图 7  磁电层状复合材料 (a) 对称磁-弹-电等效电路; (b) 在自由边界条件下的对称等效电路

    Fig. 7.  (a) Symmetric magneto-elastic-electric equivalent circuit and (b) symmetric equivalent circuit under free boundary conditions of magnetoelectric laminated composite.

    图 8  频率1 kHz处不同预应力时磁电系数随偏置磁场的变化曲线

    Fig. 8.  The variation curve of magnetoelectric coefficient with bias magnetic field under different prestress at frequency of 1 kHz.

    图 9  共振频率处不同预应力时磁电系数随偏置磁场的变化曲线

    Fig. 9.  The variation curve of magnetoelectric coefficient with bias magnetic field under different prestress at resonance frequency.

    图 10  磁电层合材料的(a)仿真模型和(b)网格划分

    Fig. 10.  (a) Simulation model and (b) grid division of magnetoelectric laminated composite.

    图 11  偏置磁场750 Oe预应力0 MPa处磁电系数的频率曲线

    Fig. 11.  Frequency curve of magnetoelectric coefficient at bias magnetic field of 750 Oe and prestress of 0 MPa.

    图 12  磁电层合材料共振频率处的振动模态

    Fig. 12.  Vibration mode at the resonance frequency of magnetoelectric laminated composite.

  • [1]

    谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立 2023 物理学报 72 117501Google Scholar

    Xie B H, Xu G K, Xiao S Q, Yu Z J, Zhu D L 2023 Acta Phys. Sin. 72 117501Google Scholar

    [2]

    Truong B D 2020 IEEE Sens. J. 20 2967808Google Scholar

    [3]

    Han J, Zhang J J, Gao Y W 2018 J. Magn. Magn. Mater. 466 200Google Scholar

    [4]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [5]

    Zhang X L, Zhou J P, Yao X, Yang Z P, Zhang G B 2020 J. Magn. Magn. Mater. 501 166411Google Scholar

    [6]

    Zheng X J, Sun L 2006 J. Appl. Phys. 100 063906

    [7]

    Lin L Z, Wan Y P, Li F X 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 7 1568

    [8]

    Zhou H M, Ou X W, Xiao Y, Qu S X, Wu H P 2013 Smart Mater. Struct. 22 035018Google Scholar

    [9]

    Zhou H M, Li C, Xuan L M, Wei J 2011 Smart Mater. Struct. 20 035001Google Scholar

    [10]

    Liang Y R, Zheng X J 2007 Acta Mech. Solida Sin. 20 283Google Scholar

    [11]

    Moffett M B, Linberg J, Mclaughlin E A 1991 J. Acoust. Soc. Am. 89 1448Google Scholar

    [12]

    Zheng X J, Liu X E 2005 J. Appl. Phys. 97 053901Google Scholar

    [13]

    Zhou H M, Cui X L 2014 Smart Mater. Struct. 23 105104

    [14]

    Shi Y, 2018 Compos. Struct. 185 474Google Scholar

    [15]

    Li J Z, Wen Y M, Li P, Yang J 2017 IEEE Trans. Power Electr. 53 2500406

    [16]

    Muchenik T I, Barbero E J 2015 Smart Mater. Struct. 24 025039Google Scholar

    [17]

    Zhou J P, Yang Y, Zhang G B, Peng J H, Liu P 2016 Compos. Struct. 155 107Google Scholar

    [18]

    Zhang X L, Zhou J P, Yao X, Yang Z P, Zhang G B 2019 AIP Adv. 9 105315Google Scholar

    [19]

    卞雷祥, 文玉梅, 李平 2009 物理学报 58 4205Google Scholar

    Bian L X, Wen Y M, Li P 2009 Acta Phys. Sin. 58 4205Google Scholar

    [20]

    Zhou H M, Xuan L M, Li C, Wei J 2011 J. Magn. Magn. Mater. 323 2802

    [21]

    Boukazouha F, Poulin-Vittrant G, Tran-Huu-Hue L P, Bavencoffe M, Boubenider F 2015 Ultrasonics 60 41Google Scholar

    [22]

    Malleron K, Talleb H, Gensbittel A, Ren Z 2017 IEEE Trans. Magn. 53 8102104

    [23]

    Fu X, Gou Y 2022 Appl. Acoust. 193 108752Google Scholar

    [24]

    Zhang X L, Yin Q P, Li G, Yao X 2022 J. Magn. Magn. Mater. 564 170112

  • [1] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [2] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [3] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [4] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟. 物理学报, 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [5] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [6] 代显智. 基于能量转换原理的磁电层合材料低频磁电响应分析. 物理学报, 2014, 63(20): 207501. doi: 10.7498/aps.63.207501
    [7] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [8] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真. 物理学报, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [9] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制. 物理学报, 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [10] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [11] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [12] 万频, 詹宜巨, 李学聪, 王永华. 一种单稳随机共振系统信噪比增益的数值研究. 物理学报, 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [13] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [14] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [15] 胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林. 螺旋线行波管三维多频非线性理论分析和数值模拟. 物理学报, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [16] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [17] 于 洁, 章 东, 刘晓宙, 龚秀芬, 宋富先. 圆锥面PVDF聚焦换能器的非线性声场理论及实验研究. 物理学报, 2007, 56(10): 5909-5914. doi: 10.7498/aps.56.5909
    [18] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] 唐昌建, 钱尚介. 离子通道回旋电子注受激辐射非线性理论. 物理学报, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
计量
  • 文章访问数:  163
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-06
  • 修回日期:  2024-11-11
  • 上网日期:  2024-11-13

/

返回文章
返回