搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零视野条件下考虑结伴行为的行人疏散研究

陈亮 郭志良 李永行 张健 唐铁桥 陈艳艳

引用本文:
Citation:

零视野条件下考虑结伴行为的行人疏散研究

陈亮, 郭志良, 李永行, 张健, 唐铁桥, 陈艳艳
cstr: 32037.14.aps.73.20241007

Research on pedestrian evacuation considering group behavior under zero-visibility condition

Chen Liang, Guo Zhi-Liang, Li Yong-Xing, Zhang Jian, Tang Tie-Qiao, Chen Yan-Yan
cstr: 32037.14.aps.73.20241007
PDF
HTML
导出引用
  • 为研究零视野条件下结伴行为对行人疏散过程的影响, 本文采用可控实验与建模仿真相结合的方法, 对零视野条件下结伴行人的疏散过程进行深入研究. 首先, 通过组织零视野条件下行人的结伴疏散实验, 发现了零视野条件下结伴行人的结伴行为、听觉引导行为和沿墙行为等典型疏散行为特征. 然后, 考虑不同结伴模式下行人的运动行为特征以及听觉引导行为、沿墙行为对结伴疏散过程的影响机制, 构建了基于元胞自动机的零视野条件下行人疏散模型. 最后, 利用实验结果对提出的模型进行验证, 仿真研究了零视野条件下结伴行为对疏散过程的影响. 结果表明, 模型能有效地刻画零视野条件下结伴行人的疏散行为特征, 疏散效率随结伴感知距离增加而降低. 该研究可为类似场景中行人疏散策略和方案的制定提供科学依据.
    The influences of group behavior on pedestrian evacuation under zero-visibility conditions are analyzed in depth by combining controlled experiments with modeling and simulation in this work. Initially, by experiments on pedestrian evacuation under zero-visibility conditions, typical evacuation behaviors are identified such as group behavior, auditory guidance behavior, and wall-following behavior. The pedestrians rely on auditory information to guide their companions in the process of forming groups. Pedestrian group behavior can be divided into three modes, the walking speeds of grouped pedestrians greatly depending on their spatial positions. By comparing and analyzing the walking speeds and evacuation times of pedestrians under different grouping modes, it is found that group behavior under zero-visibility condition reduces evacuation efficiency, while walking along the walls can improve evacuation efficiency. Subsequently, considering the movement characteristics of pedestrians in different group behavior modes, the influence mechanisms of auditory guidance and wall-following behavior on the evacuation process, a pedestrian evacuation model based on cellular automata under zero-visibility conditions is developed. Finally, the proposed model is validated by using experimental results, and simulations are conducted to analyze the influences of group behavior on the evacuation process under zero-visibility conditions. By comparing and analyzing the pedestrian movement trajectories and evacuation times during both the simulation and experiment, it is verified that the model can effectively reproduce the group evacuation processes of pedestrians under zero-visibility conditions. When auditory guidance errors are considered, pedestrians exhibit wandering behaviors in their movement trajectories. In the evacuation process, the greater the distance that pedestrians can perceive each other for grouping, the higher the probability of group formation is. As a result, groups are formed earlier, which will reduce the evacuation efficiency. This indicates that under zero-visibility conditions, group behavior exerts a negative influence on the evacuation process. This research lays a scientific foundation for formulating pedestrian evacuation strategies and schemes in similar scenarios.
      通信作者: 张健, jian.zhang@bjut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 72001009)和国家自然科学基金重点项目(批准号: 72231001)资助的课题.
      Corresponding author: Zhang Jian, jian.zhang@bjut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 72001009) and the Key Program of the National Natural Science Foundation of China (Grant No. 72231001).
    [1]

    任建强, 倪顺江 2024 清华大学学报(自然科学版) 64 471Google Scholar

    Ren J Q, Ni S J 2024 J. Tsinghua Univ. (Sci. Technol.) 64 471Google Scholar

    [2]

    Moussaïd M, Perozo N, Garnier S, Dirk H, Guy T 2010 PloS One 5 e10047Google Scholar

    [3]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [4]

    霍非舟, 范丹丹, 刘昶, 马亚萍, 吕紫含, 李梦令 2023 中国安全科学学报 33 126Google Scholar

    Huo F Z, Fan D D, Liu C, Ma Y P, Lv Z H, Li M L 2023 CSSJ 33 126Google Scholar

    [5]

    Fu L B, Cao S C, Shi Y Q, Chen S, Yang P, Fang J 2019 Saf. Sci. 117 447Google Scholar

    [6]

    张蕊, 杨静, 杨晨威, 代盛旭 2019 交通运输系统工程与信息 19 163Google Scholar

    Zhang R, Yang J, Yang C W, Dai S X 2019 TSEIT 19 163Google Scholar

    [7]

    武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 物理学报 70 148901Google Scholar

    Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 148901Google Scholar

    [8]

    周金旺, 邝华, 刘慕仁, 孔令江 2009 物理学报 58 3001Google Scholar

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001Google Scholar

    [9]

    Wei X G, Lv W, Song W G, Li X 2015 Complexity 20 87Google Scholar

    [10]

    Gorrini A, Vizzari G, Bandini S 2016 Collective Dyn. 1 1Google Scholar

    [11]

    Chen L, Tang T Q, Song Z Q, Song Ziqi, Huang H J, Guo R Y 2019 Simul. Model. Pract. Theory 90 31Google Scholar

    [12]

    Cuesta A, Abreu O, Balboa A, Daniel A 2021 Fire Saf. J. 120 103018Google Scholar

    [13]

    Ren J X, Mao Z L, Zhang D, Gong M, Zuo S 2022 Int. J. Disaster Risk Reduct. 80 103228Google Scholar

    [14]

    Xie W, Zhang Y C, Cheng Y Y, Chen S M, Liang X W, Zhang W B 2018 Procedia Eng. 211 830Google Scholar

    [15]

    Xie W, Lee E W M, Li T, Shi M, Cao R F, Zhang Y C 2021 Saf. Sci. 133 105029Google Scholar

    [16]

    Was J, Porzycki J, Schmidt-Polończyk N 2020 Collective Dyn. 5 93Google Scholar

    [17]

    Xue S Q, Jiang R, Wong S C 2020 Transportmetrica A 16 626Google Scholar

    [18]

    Zeng G, Li Z, Ye R, Cao S 2024 Tunn. Undergr. Space Technol. 146 105661Google Scholar

    [19]

    童蔚苹, 程琳 2014 系统工程理论与实践 34 2386Google Scholar

    Tong W P, Cheng L 2014 Systems Eng. Theory Practice 34 2386Google Scholar

    [20]

    Guo C L, Huo F Z, Li C, Li Y 2023 Physica A 615 128602Google Scholar

    [21]

    Zhou Y, Zhou Z P, Pu Z Y, Qi Y, Xu Y N 2019 Transp. Res. Rec. 2673 851Google Scholar

    [22]

    National Library of Standards of China National Institute of Standardization https://www.nssi.org.cn/nssi/front/124378676.html [2024-7-11]

    [23]

    Lei W J, Li A G, Gao R, Hao X P, Deng B S 2012 Physica A 391 5355Google Scholar

    [24]

    武悦, 康健 2016 城市建筑 16 121Google Scholar

    Wu Y, Kang J 2016 UA 16 121Google Scholar

  • 图 1  实验场景示意图

    Fig. 1.  Schematic diagram of the experimental scenario.

    图 2  结伴模式I下行人的运动轨迹

    Fig. 2.  Pedestrian trajectories under group mode I.

    图 3  结伴模式II下行人的运动轨迹

    Fig. 3.  Pedestrian trajectories under group mode II.

    图 4  结伴模式III下行人的运动轨迹

    Fig. 4.  Pedestrian trajectories under group mode III.

    图 5  无规律小组的行人运动轨迹 (a) 无规律小组1; (b) 无规律小组2; (c) 无规律小组3

    Fig. 5.  Pedestrian trajectories of the irregular groups: (a) Irregular group 1; (b) irregular group 2; (c) irregular group 3.

    图 6  听觉引导行为 (a) 疏散开始阶段; (b) 同伴发现出口后

    Fig. 6.  Auditory guidance behavior: (a) At the beginning of the evacuation; (b) after the companion has discovered the exit.

    图 7  不同结伴模式下基于速度变化的行人运动轨迹 (a) 结伴模式I; (b) 结伴模式II; (c) 结伴模式III

    Fig. 7.  Pedestrian trajectories based on velocity changes under different group modes: (a) Group mode I; (b) group mode II; (c) group mode III.

    图 8  不同空间位置划分示意图

    Fig. 8.  Schematic diagram of different spatial locations.

    图 9  不同结伴模式下不同空间位置的行人速度

    Fig. 9.  Pedestrian speeds at different spatial locations under different group modes.

    图 10  实验中不同结伴模式下每个小组的疏散时间

    Fig. 10.  Evacuation time for each group in the experiment under different group modes.

    图 11  行人可以运动的方向和相邻元胞的转移概率

    Fig. 11.  Direction in which pedestrians can move and the transfer probability of neighboring cells.

    图 12  行人的结伴形态

    Fig. 12.  Group shapes of pedestrians.

    图 13  仿真中的行人运动轨迹 (a) 考虑听觉引导误差; (b) 不考虑听觉引导误差

    Fig. 13.  Pedestrian trajectories in the simulation: (a) Considering auditory guidance error; (b) without considering auditory guidance error.

    图 14  结伴模式I下行人在元胞中的平均停留时间步数

    Fig. 14.  Average number of time steps pedestrians stayed in cells under group mode I.

    图 16  结伴模式III下行人在元胞中的平均停留时间步数

    Fig. 16.  Average number of time steps pedestrians stayed in cells under group mode III.

    图 15  结伴模式II下行人在元胞中的平均停留时间步数 (a) 包含等待位置; (b) 去除等待位置

    Fig. 15.  Average number of time steps pedestrians spend in cells in group mode II: (a) With waiting positions; (b) without waiting positions

    图 17  仿真和实验中不同结伴模式下行人的疏散时间

    Fig. 17.  Evacuation times of pedestrians under different group modes in simulations and experiments.

    图 18  结伴感知距离对行人疏散时间的影响

    Fig. 18.  Effect of grouping perceived distance on pedestrian evacuation time.

  • [1]

    任建强, 倪顺江 2024 清华大学学报(自然科学版) 64 471Google Scholar

    Ren J Q, Ni S J 2024 J. Tsinghua Univ. (Sci. Technol.) 64 471Google Scholar

    [2]

    Moussaïd M, Perozo N, Garnier S, Dirk H, Guy T 2010 PloS One 5 e10047Google Scholar

    [3]

    岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499Google Scholar

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499Google Scholar

    [4]

    霍非舟, 范丹丹, 刘昶, 马亚萍, 吕紫含, 李梦令 2023 中国安全科学学报 33 126Google Scholar

    Huo F Z, Fan D D, Liu C, Ma Y P, Lv Z H, Li M L 2023 CSSJ 33 126Google Scholar

    [5]

    Fu L B, Cao S C, Shi Y Q, Chen S, Yang P, Fang J 2019 Saf. Sci. 117 447Google Scholar

    [6]

    张蕊, 杨静, 杨晨威, 代盛旭 2019 交通运输系统工程与信息 19 163Google Scholar

    Zhang R, Yang J, Yang C W, Dai S X 2019 TSEIT 19 163Google Scholar

    [7]

    武鑫森, 岳昊, 刘秋梅, 张旭, 邵春福 2021 物理学报 70 148901Google Scholar

    Wu X S, Yue H, Liu Q M, Zhang X, Shao C F 2021 Acta Phys. Sin. 70 148901Google Scholar

    [8]

    周金旺, 邝华, 刘慕仁, 孔令江 2009 物理学报 58 3001Google Scholar

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001Google Scholar

    [9]

    Wei X G, Lv W, Song W G, Li X 2015 Complexity 20 87Google Scholar

    [10]

    Gorrini A, Vizzari G, Bandini S 2016 Collective Dyn. 1 1Google Scholar

    [11]

    Chen L, Tang T Q, Song Z Q, Song Ziqi, Huang H J, Guo R Y 2019 Simul. Model. Pract. Theory 90 31Google Scholar

    [12]

    Cuesta A, Abreu O, Balboa A, Daniel A 2021 Fire Saf. J. 120 103018Google Scholar

    [13]

    Ren J X, Mao Z L, Zhang D, Gong M, Zuo S 2022 Int. J. Disaster Risk Reduct. 80 103228Google Scholar

    [14]

    Xie W, Zhang Y C, Cheng Y Y, Chen S M, Liang X W, Zhang W B 2018 Procedia Eng. 211 830Google Scholar

    [15]

    Xie W, Lee E W M, Li T, Shi M, Cao R F, Zhang Y C 2021 Saf. Sci. 133 105029Google Scholar

    [16]

    Was J, Porzycki J, Schmidt-Polończyk N 2020 Collective Dyn. 5 93Google Scholar

    [17]

    Xue S Q, Jiang R, Wong S C 2020 Transportmetrica A 16 626Google Scholar

    [18]

    Zeng G, Li Z, Ye R, Cao S 2024 Tunn. Undergr. Space Technol. 146 105661Google Scholar

    [19]

    童蔚苹, 程琳 2014 系统工程理论与实践 34 2386Google Scholar

    Tong W P, Cheng L 2014 Systems Eng. Theory Practice 34 2386Google Scholar

    [20]

    Guo C L, Huo F Z, Li C, Li Y 2023 Physica A 615 128602Google Scholar

    [21]

    Zhou Y, Zhou Z P, Pu Z Y, Qi Y, Xu Y N 2019 Transp. Res. Rec. 2673 851Google Scholar

    [22]

    National Library of Standards of China National Institute of Standardization https://www.nssi.org.cn/nssi/front/124378676.html [2024-7-11]

    [23]

    Lei W J, Li A G, Gao R, Hao X P, Deng B S 2012 Physica A 391 5355Google Scholar

    [24]

    武悦, 康健 2016 城市建筑 16 121Google Scholar

    Wu Y, Kang J 2016 UA 16 121Google Scholar

  • [1] 华雪东, 王炜, 王昊. 考虑自适应巡航车辆影响的上匝道系统混合交通流模型. 物理学报, 2016, 65(8): 084503. doi: 10.7498/aps.65.084503
    [2] 张柠溪, 祝会兵, 林亨, 黄梦圆. 考虑动态车间距的一维元胞自动机交通流模型. 物理学报, 2015, 64(2): 024501. doi: 10.7498/aps.64.024501
    [3] 陈静, 庞明宝, 杨敏. 中小学门口道路上学期间的一个元胞自动机模型. 物理学报, 2014, 63(9): 094502. doi: 10.7498/aps.63.094502
    [4] 禹尔东, 吴正, 郭明旻. 双出口房间人群疏散的实验研究和数学建模. 物理学报, 2014, 63(9): 094501. doi: 10.7498/aps.63.094501
    [5] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] 陈然, 李翔, 董力耘. 地铁站内交织行人流的简化模型和数值模拟. 物理学报, 2012, 61(14): 144502. doi: 10.7498/aps.61.144502
    [7] 张晶晶, 庞明宝, 任沙沙. 基于元胞自动机模型的高速公路可变速度限制交通流特性分析. 物理学报, 2012, 61(24): 244503. doi: 10.7498/aps.61.244503
    [8] 杨凌霄, 赵小梅, 高自友, 郑建风. 考虑交通出行惯例的双向行人流模型研究. 物理学报, 2011, 60(10): 100501. doi: 10.7498/aps.60.100501
    [9] 丁建勋, 黄海军. 考虑停靠站影响的公交运输系统模型. 物理学报, 2010, 59(5): 3093-3098. doi: 10.7498/aps.59.3093
    [10] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究. 物理学报, 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [11] 贾宁, 马寿峰. 最优速度模型与元胞自动机模型的比较研究. 物理学报, 2010, 59(2): 832-841. doi: 10.7498/aps.59.832
    [12] 白克钊, 陈瑞熊, 刘慕仁, 孔令江, 郑容森. 平面环行交叉路口交通流的研究. 物理学报, 2009, 58(7): 4500-4505. doi: 10.7498/aps.58.4500
    [13] 丁建勋, 黄海军, 唐铁桥. 一种考虑速度随机慢化概率动态演化的交通流元胞自动机模型. 物理学报, 2009, 58(11): 7591-7595. doi: 10.7498/aps.58.7591
    [14] 雷 丽, 董力耘, 葛红霞. 基于元胞自动机模型的上匝道合流处交替通行控制的研究. 物理学报, 2007, 56(12): 6874-6880. doi: 10.7498/aps.56.6874
    [15] 肖世发, 刘慕仁, 孔令江. 高速桥梁瓶颈模型属性的研究. 物理学报, 2006, 55(7): 3328-3335. doi: 10.7498/aps.55.3328
    [16] 雷 丽, 董力耘, 宋 涛, 戴世强. 基于元胞自动机模型的高架路交织区交通流的研究. 物理学报, 2006, 55(4): 1711-1717. doi: 10.7498/aps.55.1711
    [17] 葛红霞, 祝会兵, 戴世强. 智能交通系统的元胞自动机交通流模型. 物理学报, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [18] 彭 麟, 谭惠丽, 吴大艳, 刘慕仁, 孔令江. 交通灯控制下城市主干道双车道多速元胞自动机交通流模型研究. 物理学报, 2004, 53(9): 2899-2904. doi: 10.7498/aps.53.2899
    [19] 雷 丽, 薛 郁, 戴世强. 交通流的一维元胞自动机敏感驾驶模型. 物理学报, 2003, 52(9): 2121-2126. doi: 10.7498/aps.52.2121
    [20] 汪秉宏, 王 雷, 许伯铭, 胡斑比. 高速车随机延迟逐步加速交通流元胞自动机模型. 物理学报, 2000, 49(10): 1926-1932. doi: 10.7498/aps.49.1926
计量
  • 文章访问数:  587
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-08-22
  • 上网日期:  2024-09-26
  • 刊出日期:  2024-11-05

/

返回文章
返回