搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd-Si非晶合金动力学非均匀性的对称与有序

陈贝 王小云 刘涛 高明 文大东 邓永和 彭平

引用本文:
Citation:

Pd-Si非晶合金动力学非均匀性的对称与有序

陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平

Symmetry and order of kinetic heterogeneity in Pd-Si amorphous alloys

Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping
PDF
HTML
导出引用
  • 微结构特征和结构演化机制是非晶态材料的研究重点, 非晶合金的动力学行为可以揭示非晶合金的形成过程和结构演化机制. 本文采用分子动力学模拟方法探讨了Pd原子的浓度对Si原子扩散的阻碍作用及其对体系对称性和有序度的影响. 并对与原子扩散、体系的对称性及有序度有关的参数进行了分析, 结果表明, 增加Pd原子的浓度会导致Si原子的扩散受到更明显的阻碍, 表现为Si原子的非高斯参数异常峰的峰值增大和位移的标准差减小. 这一现象表明, 增加Pd原子浓度会增强了Si原子的牢笼效应, 限制Si原子的扩散. 此外, Pd原子浓度的增加促进了Pd-Si非晶合金中不饱和键型向饱和键型的转变, 且体系的构型熵降低, 提高了Pd-Si非晶合金的局域对称性和有序度, 使得Si原子处于封闭性更强、对称性更高、结构更加紧凑的团簇结构中, 增强了其牢笼效应和局域对称性. 本文探讨了Pd原子浓度对Si原子的扩散行为及局域环境的影响机制, 为深入理解非晶合金的结构演化提供了新的视角.
    In amorphous alloys, the atomic arrangement exhibits short-range order while lacking long-range order. Despite the lack of long-range order, the local atomic arrangements and interactions can still significantly affect the motion of atoms. The microstructural features and structural evolution mechanisms of amorphous materials are key areas of research, and the dynamics of amorphous alloys can provide insights into their formation process and structural evolution. The cage effect refers to the phenomenon where atoms are trapped by their surrounding atoms, making them difficult to migrate or diffuse freely. This leads to slower diffusion rates and higher viscosities in these materials. Atomic concentration is one of the crucial factors that influence the structures and properties of amorphous materials. Variation in concentration can significantly change the material’s structure. Adjusting the atomic concentration can lead to the difference in diffusion rate between elements in the amorphous alloys, resulting in heterogeneous distributions of elements in different regions, which in turn affects the deformation characteristics of amorphous materials. This study aims to investigate the effect of Pd atomic concentration on the diffusion hindrance of Si atoms, as well as its influence on the local symmetry and order of the system. To achieve this objective, molecular dynamics simulations are employed to explore the relaxation process of atoms in Pd-Si amorphous alloys at different Pd atomic concentrations, and parameters related to atomic diffusion, displacement distribution, system symmetry, and order are analyzed. The results show that increasing the concentration of Pd atoms leads to a more significant hindrance to the diffusion of Si atoms, manifested as an increase in the abnormal peak values of the non-Gaussian parameters and a decrease in the standard deviation of the displacement. This indicates that a higher Pd atom concentration enhances the cage effect of Si atoms, thus restricting their diffusion. Additionally, the increase in Pd concentration promotes the transition from unsaturated to saturated bond type in the Pd-Si amorphous alloy, and also leads the system’s configurational entropy to decrease. This consequently enhances the local symmetry and order of the Pd-Si amorphous alloys, leading Si atoms to be located in the center of more closed, higher-symmetry, and more compact cluster structure, which strengthens their cage effect and local symmetry. This study investigates the influence of Pd atom concentration on the diffusion behavior and local environment of Si atoms, providing a new insight into the structural evolution of amorphous alloys.
  • 图 1  Pd-Si非晶合金弛豫过程中Pd原子和Si原子的均方位移随时间的变化 (a) Pd; (b) Si

    Fig. 1.  Time-dependent evolution of mean square displacement of Pd and Si atoms during the relaxation in Pd-Si amorphous alloys: (a) Pd; (b) Si.

    图 2  Pd-Si非晶合金弛豫过程中Si原子的非高斯参数随时间的变化 (a) 不同浓度体系Si原子的非高斯参数; (b) 不同浓度体系Si原子非高斯参数异常峰峰值

    Fig. 2.  Variation of non-Gaussian parameters of Si atoms in different systems during the relaxation of Pd-Si amorphous alloys: (a) Non-Gaussian parameters; (b) abnormal peak values of non-Gaussian parameters.

    图 3  Pd-Si非晶合金中Si原子在0.08 ps内的Von Hove相关函数的自部分

    Fig. 3.  Self-part of the Von Hove correlation function for the time evolution of Si atoms in Pd-Si amorphous alloys during 0.08 ps.

    图 4  Pd-Si非晶合金中Si原子的平均位移与位移标准差

    Fig. 4.  Average displacement and displacement standard deviation of Si atoms in Pd-Si amorphous alloys.

    图 5  Pd-Si非晶合金在300 K时的结构特征 (a) 偏双体分布函数gPd-Si(r); (b) 结构示意图

    Fig. 5.  Structural characteristics of Pd-Si amorphous alloys at 300 K: (a) The pair distribution function; (b) visual displays.

    图 6  Si原子的近邻Pd原子个数 (a) 以第一峰为截断距离; (b) 以第一谷为截断距离

    Fig. 6.  Number of neighboring Pd atoms for Si atoms: (a) The first peak value as the truncation distance; (b) the first valley value as the truncation distance.

    图 7  Pd-Si非晶合金在300 K时的H-A键型分析 (a) 典型H-A键型所占百分比; (b) 典型H-A键型结构示意图

    Fig. 7.  Analysis of H-A bond types of Pd-Si amorphous alloys at 300 K: (a) Percentage of typical H-A bond types; (b) visual displays of H-A bond types.

    图 8  Pd-Si非晶合金中在300 K时体系中以Si原子为中心的典型团簇分析 (a) 团簇数目; (b) 团簇结构示意图

    Fig. 8.  Analysis of typical cluster centered on Si atoms in Pd-Si amorphous alloys at 300 K: (a) Number of clusters; (b) visual displays of cluster structure.

    图 9  Pd-Si非晶合金的构型熵

    Fig. 9.  Configuration entropy of Pd-Si amorphous alloys.

  • [1]

    Qiao J C, Pelletier J M 2014 J. Mater. Sci. Technol. 30 523

    [2]

    Abrosimova G E 2011 Phys. Usp. 54 1227Google Scholar

    [3]

    Cornet A, Garbarino G, Zontone F, Chushkin Y, Jacobs J, Pineda E, Deschamps T, Li S, Ronca A, Shen J, Morard G, Neuber N, Frey M, Busch R, Gallino I, Mezouar M, Vaughan G, Ruta B 2023 Acta Mater. 255 119065Google Scholar

    [4]

    Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254Google Scholar

    [5]

    陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平 2024 物理学报 73 026101Google Scholar

    Chen B, Deng Y H, Qi Q H, Gao M, Wen D D, Wang X Y, Peng P 2024 Acta Phys. Sin. 73 026101Google Scholar

    [6]

    Gao M , Wen D D, Cao G Q, Zhang Y W, Deng Y H, Hu J H 2023 Appl. Surf. Sci. 640 1158286

    [7]

    Faruq M, Villesuzannea A, Shao G S 2018 J. Non-Cryst. Solids 487 72Google Scholar

    [8]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater Sci. 145 101311Google Scholar

    [9]

    Deng Y H, Chen B, Qi Q H, Li B B, Gao Mg, Wen D D, Wang X Y, Peng P 2024 Chin. Phys. B 33 047102Google Scholar

    [10]

    Raya I, Chupradit S, Kadhim M M, Mahmoud M Z, Jalil A T, Surendar A, Ghafel S T, Mustafa Y F, Bochvar A N 2022 Chin. Phys. B 31 016401Google Scholar

    [11]

    Jiang J, Sun W F, Luo N 2022 Mater. Today Commun. 31 103861

    [12]

    Laws K J, Granata D, Löffler J F 2016 Acta Mater. 103 735Google Scholar

    [13]

    Fernández R, Carrasco W, Zúñiga A 2010 J. Non-Cryst. Solids 365 1665

    [14]

    Chen Y X, Pan S P, Lu X Q, Kang H, Zhang Y H, Zhang M, Feng S D, Ngai K L, Wang L M 2022 J. Non-Cryst. Solids 590 121699

    [15]

    Gao Q, Jiang Y, Liu Z, Zhang H, Jiang C, Zhang X, Li H 2020 Mater. Sci. Eng. , A 779 139139Google Scholar

    [16]

    Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388

    [17]

    Pourasghar A, Kamarian S 2015 J. Vib. Control 21 2499Google Scholar

    [18]

    Celtek M, Sengul S, Domekeli U, Guder V 2023 J. Mol. Liq. 372 121163Google Scholar

    [19]

    Nandam S H, Adjaoud O, Schwaiger R, Ivanisenko Y, Chellali M R, Wang D, Albe K, Hahn H 2020 Acta Mater. 193 252Google Scholar

    [20]

    Verlet L 1967 Phys. Rev. 159 98

    [21]

    Available at https://www. google. com/site/eampotentials/Table/PdSi

    [22]

    Priezjev N V 2020 Comput. Mater. Sci. 174 109477Google Scholar

    [23]

    Moon J 2021 J. Appl. Phys. 130 055101Google Scholar

    [24]

    Sun L, Peng C, Cheng Y, Song K, Li X, Wang L 2021 J. Non-Cryst. Solids 563 120814Google Scholar

    [25]

    Li Y G, Suleiman K, Xu Y 2024 Phys. Rev. E 109 014139

    [26]

    Wen T Q, Sun Y, Ye B L, Tang L, Yang Z J, Ho K M, Wang C Z, Wang N 2018 J. Appl. Phys. 123 045108Google Scholar

    [27]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [28]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [29]

    Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater. Des. 158 248Google Scholar

    [30]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids 355 541Google Scholar

    [31]

    Zhou Y, Liang Y C, Zhou L L, Mo Y F, Wu R L, Tian Z A 2023 J. Non-Cryst. Solids 612 1222354

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [2] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20241170
    [3] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联. 物理学报, doi: 10.7498/aps.72.20231153
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202116
    [5] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, doi: 10.7498/aps.70.20201407
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191069
    [7] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20181530
    [9] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, doi: 10.7498/aps.66.106102
    [10] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, doi: 10.7498/aps.66.136102
    [11] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.245202
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, doi: 10.7498/aps.62.165203
    [13] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, doi: 10.7498/aps.60.026101
    [14] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.095203
    [15] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.045209
    [16] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.7225
    [17] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, doi: 10.7498/aps.53.2497
    [19] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, doi: 10.7498/aps.52.2254
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  144
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2024-11-04
  • 上网日期:  2024-11-13

/

返回文章
返回