搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

希格斯物理研究: 昨天、今天、明天

周辰 朱永峰 郭倩颖 张轩豪 张铭滔 耿新月 何杰汉 潘程扬 王一品 杨楚雪 陈嘉华

引用本文:
Citation:

希格斯物理研究: 昨天、今天、明天

周辰, 朱永峰, 郭倩颖, 张轩豪, 张铭滔, 耿新月, 何杰汉, 潘程扬, 王一品, 杨楚雪, 陈嘉华
cstr: 32037.14.aps.73.20241207

Higgs physics research: yesterday, today, and tomorrow

Zhou Chen, Zhu Yong-Feng, Guo Qian-Ying, Zhang Xuan-Hao, Zhang Ming-Tao, Geng Xin-Yue, He Jie-Han, Pan Cheng-Yang, Wang Yi-Pin, Yang Chu-Xue, Chen Jia-Hua
cstr: 32037.14.aps.73.20241207
PDF
HTML
导出引用
  • 希格斯物理是高能物理最重要的研究方向之一. 希格斯机制赋予了基本粒子质量, 并预言了希格斯玻色子的存在. 大型强子对撞机(LHC)上的ATLAS和CMS实验在2012年发现了希格斯玻色子, 完成了标准模型的基本粒子谱. 高能物理学家研究了希格斯玻色子的各种性质, 来检验标准模型的希格斯机制是否正确, 并探寻是否存在新的希格斯机制. 高能物理学家也提出了希格斯工厂的计划, 进行了大量的预研工作. 本文回顾了希格斯玻色子的发现历程, 介绍了其物理性质的研究现状, 并讨论了未来希格斯工厂的物理前景.
    This article reviews the discovery of the Higgs boson, discusses the studies of its properties, and introduces the physical prospects of the future Higgs factories. The greatest goal of particle physics is to understand the fundamental particles of the universe and how they interact with each other (or more generally, how the universe operates). In the standard model of particle phyiscs, the Higgs mechanism is proposed to explain the origin of elementary particle mass and predict the existence of the Higgs boson. Higgs physics is one of the most important research areas in particle physics. The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) accelerates proton beams to collide at center-of-mass energy of 13 TeV, thus defining the world’s energy frontier. The ATLAS and CMS detectors are two general-purpose detectors at the LHC for studying the debris from the collisions. The Higgs boson was discovered in the ATLAS and CMS experiments in 2012. This discovery completed the fundamental particle spectrum of the standard model and was an important milestone for particle physics. Since then, many studies have been conducted on the properties of Higgs boson, including spin, mass and couplings, to deepen our understanding of the Higgs mechanism. In particular, the Higgs boson couplings to fermions and to themselves present new kinds of fundamental interactions with paramount significance, which have not been fully confirmed. Additionally, the Higgs bosons has become an important tool to search for dark matter, heavy resonance, and other new physical phenomena. So far, there has been no deviation from the predictions of the standard model. Looking forward to the future, it is proposed to use the electron-positron collisions to study the Higgs boson in more depth. Physics studies have shown that these Higgs factories can significantly improve the accuracy of many properties of the Higgs boson, including width and couplings, and provide great physics prospects.
      通信作者: 周辰, czhouphy@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1605800)、国家自然科学基金(批准号: 12275005)和中央高校基本科研业务费(北京大学)资助的课题.
      Corresponding author: Zhou Chen, czhouphy@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1605800), the National Natural Science Foundation of China (Grant No. 12275005), and the Fundamental Research Fund for Central Universities (Peking University), China.
    [1]

    Higgs P W 1964 Phys. Lett. 12 132Google Scholar

    [2]

    Higgs P W 1964 Phys. Rev. Lett. 13 508Google Scholar

    [3]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321Google Scholar

    [4]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Lett. 13 585Google Scholar

    [5]

    Alam M, Katayama N, Kim I J, et al. 1989 Phys. Rev. D 40 712Google Scholar

    [6]

    Egli S, et al. (SINDRUM Collaboration) 1989 Phys. Lett. B 222 533Google Scholar

    [7]

    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, et al. 2003 Phys. Lett. B 565 61Google Scholar

    [8]

    Aaltonen T, et al. (CDF Collaboration, D0 Collaboration) 2012 Phys. Rev. Lett. 109 071804Google Scholar

    [9]

    Aad G, et al. (ATLAS Collaboration) 2012 Phys. Lett. B 716 1Google Scholar

    [10]

    Chatrchyan S, et al. (CMS Collaboration) 2012 Phys. Lett. B 716 30Google Scholar

    [11]

    Aad G, et al. (ATLAS Collaboration) 2022 Nature 607 52Google Scholar

    [12]

    Tumasyan A, et al. (CMS Collaboration) 2022 Nature 607 60Google Scholar

    [13]

    Sirunyan A M, et al. (CMS Collaboration) 2020 Phys. Lett. B 805 135425Google Scholar

    [14]

    Tumasyan A, et al. (CMS Collaboration) 2022 Nat. Phys. 18 1329Google Scholar

    [15]

    Aad G, et al. (ATLAS Collaboration) 2023 Phys. Rev. Lett. 131 251802Google Scholar

    [16]

    Aad G, et al. (ATLAS Collaboration) 2023 Phys. Lett. B 846 138223Google Scholar

    [17]

    Khachatryan V, et al. (CMS Collaboration) 2015 Phys. Rev. D 92 012004Google Scholar

    [18]

    Aad G, et al. (ATLAS Collaboration) 2015 Eur. Phys. J. C 75 476Google Scholar

    [19]

    Aaboud M, et al. (ATLAS Collaboration) 2018 Phys. Lett. B 784 173Google Scholar

    [20]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Rev. Lett. 120 231801Google Scholar

    [21]

    Sirunyan A M, et al. (CMS Collaboration) 2021 J. High Energy Phys. 01 148Google Scholar

    [22]

    Aad G, et al. (ATLAS Collaboration) 2021 Phys. Lett. B 812 135980Google Scholar

    [23]

    Degrassi G, Di Vita S, Elias-Miro J, Espinosa J R, Giudice G F, Isidori G, Strumia A 2012 J. High Energy Phys. 2012 98Google Scholar

    [24]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Lett. B 779 283Google Scholar

    [25]

    Aaboud M, et al. (ATLAS Collaboration) 2019 Phys. Rev. D 99 072001Google Scholar

    [26]

    Aaboud M, et al. (ATLAS Collaboration) 2018 Phys. Lett. B 786 59Google Scholar

    [27]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Rev. Lett. 121 121801Google Scholar

    [28]

    Sirunyan A M, et al. (CMS Collaboration) 2023 Phys. Rev. Lett. 131 061801Google Scholar

    [29]

    Aad G, et al. (ATLAS Collaboration) 2022 Eur. Phys. J. C 82 717Google Scholar

    [30]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009Google Scholar

    [31]

    Aad G, et al. (ATLAS Collaboration) 2024 Phys. Rev. Lett. 133 101801Google Scholar

    [32]

    Aad G, et al. (ATLAS Collaboration) 2020 Phys. Rev. D 101 012002Google Scholar

    [33]

    Aad G, et al. (ATLAS Collaboration, CMS Collaboration) 2024 Phys. Rev. Lett. 132 021803Google Scholar

    [34]

    Cao Q H, Xu L X, Yan B, Zhu S H 2019 Phys. Lett. B 789 233Google Scholar

    [35]

    Andersen J R, et al. (LHC Higgs Cross Section Working Group) 2013 arXiv: 1307.1347 [hep-ph]

    [36]

    Aad G, et al. (ATLAS Collaboration) 2024 arXiv: 2402.05742 [hep-ex]

    [37]

    CMS Collaboration 2020 Combined Higgs Boson Production and Decay Measurements with up to 137fb-1 of Proton-proton Collision Data at $ \sqrt s$ = 13 TeV Report number: CMS-PAS-HIG-19-005

    [38]

    Sirunyan A M, et al. (CMS Collaboration) 2017 J. High Energy Phys. 2017 47Google Scholar

    [39]

    de Florian D, Grojean C, Maltoni F, Mariotti C, Nikitenko A, Pieri M, Savard P, Schumacher M, Tanaka R 2017 Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector Report number: CERN-2017-002-M

    [40]

    Tumasyan A, et al. (CMS Collaboration) 2023 Phys. Rev. D 108 032013Google Scholar

    [41]

    Sirunyan A M, et al. (CMS Collaboration) 2020 Phys. Rev. Lett. 125 061801Google Scholar

    [42]

    Tumasyan A, et al. (CMS Collaboration) 2022 J. High Energy Phys. 2022 12Google Scholar

    [43]

    Aad G, et al. (ATLAS Collaboration) 2023 Eur. Phys. J. C 83 563Google Scholar

    [44]

    Aad G, et al. (ATLAS Collaboration) 2020 Phys. Rev. Lett. 125 061802Google Scholar

    [45]

    Arbey A, Mahmoudi F 2021 Prog. Part. Nucl. Phys. 119 103865Google Scholar

    [46]

    Ward E 2019 LHC Detector Transverse Cross-section (ATLAS Experiment) ATLAS-PHOTO-2019-01

    [47]

    Carpenter L, DiFranzo A, Mulhearn M, Shimmin C, Tulin S, Whiteson D 2014 Phys. Rev. D 89 075017Google Scholar

    [48]

    Aaboud M, et al. (ATLAS Collaboration) 2019 J. High Energy Phys. 2019 142Google Scholar

    [49]

    Hayrapetyan A, et al. (CMS Collaboration) 2024 arXiv: 2403.16926 [hep-ex]

    [50]

    Lee T D 1973 Phys. Rev. D 8 1226Google Scholar

    [51]

    Branco G, Ferreira P, Lavoura L, Rebelo M, Sher M, Silva J P 2012 Phys. Rep. 516 1Google Scholar

    [52]

    Haber H E, Stål O 2015 Eur. Phys. J. C 75 491Google Scholar

    [53]

    Kling F, No J M, Su S 2016 J. High Energy Phys. 2016 93Google Scholar

    [54]

    Chalons G, Domingo F 2012 Phys. Rev. D 86 115024Google Scholar

    [55]

    Chen C Y, Freid M, Sher M 2014 Phys. Rev. D 89 075009Google Scholar

    [56]

    Muhlleitner M, Sampaio M O P, Santos R, Wittbrodt J 2017 J. High Energy Phys. 2017 94Google Scholar

    [57]

    Robens T, Stefaniak T, Wittbrodt J 2020 Eur. Phys. J. C 80 151Google Scholar

    [58]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 272 1Google Scholar

    [59]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 278 449Google Scholar

    [60]

    Degrassi G, Heinemeyer S, Hollik W, Slavich P, Weiglein G 2003 Eur. Phys. J. C 28 133Google Scholar

    [61]

    Djouadi A 2008 Phys. Rep. 459 1Google Scholar

    [62]

    Giudice G F, Rattazzi R, Wells J D 2001 Nucl. Phys. B 595 250Google Scholar

    [63]

    Pappadopulo D, Thamm A, Torre R, Wulzer A 2014 J. High Energy Phys. 2014 60Google Scholar

    [64]

    Tumasyan A, et al. (CMS Collaboration) 2023 J. High Energy Phys. 2023 73Google Scholar

    [65]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 171 [Erratum: 2022 J. High Energy Phys. 2022 187]

    [66]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 34Google Scholar

    [67]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 65Google Scholar

    [68]

    Sirunyan A M, et al. (CMS Collaboration) 2019 Eur. Phys. J. C 79 421Google Scholar

    [69]

    Zhu Y, Cui H, Ruan M 2022 J. High Energy Phys. 11 100Google Scholar

    [70]

    An F, Bai Y, Chen C H, et al. 2019 Chin. Phys. C 43 043002Google Scholar

    [71]

    Aryshev A, Behnke T, Berggren M, et al. 2022 arXiv: 2203.07622 [physics.acc-ph]

    [72]

    Linssen L, Miyamoto A, Stanitzki M, Weerts H 2012 arXiv: 1202.5940 [physics.ins-det]

    [73]

    Dong M, et al. (CEPC Study Group) 2018 arXiv: 1811.10545 [hep-ex]

    [74]

    Agapov I, Benedikt M, Blondel A, et al. 2022 arXiv: 2203.08310 [physics.acc-ph]

    [75]

    Cheng H, Chiu W H, Fang Y Q, et al. 2022 arXiv: 2205.08553 [hep-ph]

    [76]

    Liang H, Zhu Y, Wang Y, Che Y, Zhou C, Qu H, Ruan M 2024 Phys. Rev. Lett. 132 221802Google Scholar

    [77]

    Qu H, Gouskos L 2020 Phys. Rev. D 101 056019Google Scholar

    [78]

    Suehara T, Tanabe T 2016 Nucl. Instrum. Meth. A 808 109Google Scholar

    [79]

    Cui H, Zhao M, Wang Y, Liang H, Ruan M 2024 J. High Energy Phys. 2024 210 [Erratum: 2024 J. High Energy Phys. 2024 5, Erratum: 2024 J. High Energy Phys. 2024 119 ]

    [80]

    Cepeda M, Gori S, Ilten P, et al. 2019 arXiv: 1902.00134 [hep-ph]

  • 图 1  CMS实验中希格斯玻色子衰变到双光子道的实验结果[10]

    Fig. 1.  Result in Higgs to diphtons channel at CMS[10].

    图 2  ATLAS实验中希格斯玻色子衰变到四个轻子的实验结果[9]

    Fig. 2.  Result in Higgs to 4 leptons channel at ATLAS[9].

    图 3  CMS实验和ATLAS实验合并了所有的分析道后得到的结果, 显著度均达到$ 5\sigma $左右[9,10]

    Fig. 3.  Combined result for all the decay channels at CMS and ATLAS. The significance reached about $ 5\sigma $[9,10].

    图 4  ATLAS实验对希格斯粒子主要产生模式以及主要衰变道的事例率测量结果与标准模型预计结果的比值[11]

    Fig. 4.  Ratio of observed rate to predicted standard model event rate for different combinations of Higgs boson production and decay processes[11].

    图 5  标准模型真空的绝对稳定区间、亚稳态区间和不稳定区间[23]

    Fig. 5.  Regions of absolute stability, meta-stability and instability of the standard model vacuum[23].

    图 6  希格斯玻色子胶子-胶子融合产生机制以及希格斯衰变为光子对的费曼图

    Fig. 6.  The Feynman diagram of ggF and Higgs decay into a pair of photons

    图 7  希格斯玻色子伴随一对顶夸克对产生模式的费曼图

    Fig. 7.  The Feynman diagram of $ {\rm{t}}{\bar {\rm{t}}}{\rm{H}} $ production model

    图 8  ATLAS实验组获得的$ {\rm{t}}{\bar {\rm{t}}}{\rm{H}} $产生过程候选事例三维展示图, 在事例中, 探测器下部有两个孤立的光子(绿色), 共产生六个喷注(黄色锥形), 包括一个B-标记喷柱(蓝色锥形)[19]

    Fig. 8.  Three-dimensional (3D) display of a candidate event of $ {\rm{t}}{\bar {\rm{t}}}{\rm{H}} $ production mode from ATLAS. The event has the two isolated photons (green line below the detector) and six jets (yellow cone), including one B-tagged jet (blue cone).

    图 9  左图为CMS实验组VBF-SB和VBF-SR事例的$ m_{\mu\mu} $分布情况, 右图为所有事例的$ m_{\mu\mu} $分布情况[21]

    Fig. 9.  Left: the $ m_{\mu\mu} $ distribution for the weighted combination of VBF-SB and VBF-SR events. Right: the $ m_{\mu\mu} $ distribution for the weighted combination of all event categories[21].

    图 10  标准模型中, 发生自发性破缺前的希格斯势场的示意图, 形状酷似“墨西哥帽”. 可以看出, 势能的最低点并不处于原点

    Fig. 10.  Diagram of the Higgs potential field before spontaneous breaking in the standard model, shaped like a “Mexican hat”. As you can see from the diagram, the lowest point of the potential energy is not at the origin.

    图 11  希格斯玻色子对和三希格斯玻色子末态的费曼图, 左图为希格斯玻色子对过程, 蓝色圈代表三希格斯玻色子自耦合顶点$ \lambda_3 $, 右图为三希格斯玻色子产生过程, 红色圈代表四希格斯玻色子自耦合顶点$ \lambda_4 $

    Fig. 11.  The Feynman diagram of the Higgs boson pair and triple Higgs final state, the left picture is the Higgs boson pair process, the blue circle represents the three Higgs Boson self-coupling vertex $ \lambda_3 $, the right picture is the triple Higgs boson production process, the red circle represents the quartic Higgs Boson self-coupling vertex $ \lambda_4 $.

    图 12  CMS实验在95%置信度下, 采用HH的测量结果, 对$ k_{\lambda} $给出的限制[12]

    Fig. 12.  Combined expected and observed 95% CL upper limits on the HH production cross-section for different values of $ k_{\lambda} $ by CMS collaboration[12].

    图 13  ATLAS实验在95%置信度下, 采用HH的测量结果, 对$ k_{\lambda} $给出的限制[31]

    Fig. 13.  Combined expected and observed 95% CL upper limits on the HH production cross-section for different values of $ k_{\lambda} $ by ATLAS collaboration[31].

    图 14  希格斯玻色子的矢量玻色子融合产生(左)和矢量玻色子伴随产生(右)两种模式的领头阶费曼图

    Fig. 14.  Leading-order Feynman diagrams for Higgs boson production via vector boson fusion (left) and vector boson associated production (right) modes.

    图 15  希格斯玻色子产生截面的观测和预言值[11]

    Fig. 15.  Observed and expected values of the Higgs boson production cross section[11].

    图 16  希格斯玻色子各衰变道的信号强度[12]

    Fig. 16.  Signal strengths of various Higgs boson decay channels[12].

    图 17  希格斯玻色子衰变到一个Z玻色子和一个光子的费曼图[33]

    Fig. 17.  The Feynman diagram of Higgs boson decay into a Z boson and a photon[33].

    图 18  二期运行期间ATLAS和CMS组统计合并测量希格斯玻色子衰变到Z玻色子和一个光子的信号强度结果[33]

    Fig. 18.  Combined measurement of the signal strength for Higgs boson decay into a Z boson and a photon by the ATLAS and CMS collaborations during Run II.

    图 19  ATLAS和CMS合作组的希格斯玻色子与各基本粒子耦合强度的测量结果[11,12]

    Fig. 19.  Measurement of the coupling strengths between the Higgs boson and elementary particles by the ATLAS (left) and CMS (right) collaborations during Run II[11,12].

    图 20  一期运行多个衰变道数据合并中, 标准模型与$ 2^+ $的自旋假设的比较, 其中左图为CMS实验结果[17]; 右图为ATLAS实验结果[18]

    Fig. 20.  Comparison of the standard model with the $ 2^+ $ spin assumption with the combination of multiple decay channels in Run I. Left: results from the CMS experiment[17]. Right: results from the ATLAS experiment[18].

    图 21  LHC实验对暗物质粒子的探测示意图[46], 暗物质对探测器不可见, LHC实验通过计算所有可见物质的横向动量和来推算缺失动量, 从而搜寻潜在的暗物质信号

    Fig. 21.  An illustration of the LHC experiment’s search for dark matter particles[46], which are invisible to the detector. The search for potential dark matter signals is conducted by calculating the transverse momentum of all visible matter and inferring the missing transverse momentum.

    图 22  希格斯玻色子伴随暗物质粒子${\text{χ}} $产生费曼图[47]

    Fig. 22.  Feynman diagram for the production of the Higgs boson associated with a dark matter particle ${\text{χ}} $ [47].

    图 23  ATLAS合作组分析mono-Higgs信号得到的排除轮廓[48], 合并了$ {\rm{b}}\bar{\rm{b}} $和$ \gamma\gamma $希格斯玻色子衰变道的分析结果. 黑色虚线表示仅有标准模型背景假设下的预期轮廓, 绿带为1σ误差范围, 黑色实线为观测轮廓. 灰色虚线为动力学限制, 即$ m_{{\mathrm{Z}}'_{\mathrm{B}}} = 2 m_{\text{χ}}$

    Fig. 23.  Exclusion contours obtained by the ATLAS collaboration analyzing the mono-Higgs signal[48], combining results from the Higgs boson decay channels of $ {\rm{b}}\bar{\rm{b}} $ and $ \gamma\gamma $. The black dashed line represents the expected contour under the assumption of only the standard model background, with the green band indicating the 1σ error range, and the black solid line representing the observed contour. The grey dashed line represents a kinematic constraint, namely $ m_{{\mathrm{Z'_B}}} = 2 m_{\text{χ}} $.

    图 24  胶子融合产生希格斯玻色子对的领头阶费曼图[49]. 左图和中图: 非共振态粒子产生希格斯玻色子的三角图和盒形图, 其符合标准模型. 右图: 通过一个新共振粒子产生的希格斯玻色子费曼图, 其中新共振粒子用X表示

    Fig. 24.  Leading order Feynman diagrams of Higgs boson pair production via gluon fusion[49]. Left and middle: the triangle and box diagrams, respectively for nonresonant H production, as expected from the SM. Right: diagram for H boson production through a new resonance of labeled as X

    图 25  自旋为0的共振态粒子$ {\rm{X}}\rightarrow {\rm{HH}} $的产生截面与衰变分支比乘积$ {\sigma {\cal{B}}} $在95%置信水平下的上限结果[49]. 其中实线表示观察到的结果, 虚线表示的是期望结果

    Fig. 25.  Search for $ {\rm{X}}\rightarrow {\rm{HH}} $: Observed and expected 95% CL upper limits on the product of the cross section for the production of a spin-0 resonance X and the branching fraction for the corresponding HH decay[49]. The observed limits are indicated by markers connected with solid lines and the expected limits by dashed lines.

    图 26  hMSSM模型对$ {\rm{X}}\rightarrow {\rm{HH}} $的寻找结果的诠释[49]. 图中展示了在$ (m_{\rm{A}}, \, \tan\beta) $平面上, HH的联合分析在95%置信水平下观察到的和预期的排除区域, 并将其与hMSSM模型中重标量粒子衰变为$ \tau\tau $[64], tt[65]和WW[66]的寻找结果进行了对比. 此外, 还给出了$ {\rm{A}}\rightarrow {\rm{ZH}} $的一个代表性寻找结果[67], 以及通过测量希格斯玻色子耦合强度给出的间接约束[68]

    Fig. 26.  Interpretation of the results from the searches for the $ {\rm{X}}\rightarrow {\rm{HH}} $ decay, in the hMSSM model[49]. The observed and expected exclusion contours at 95% CL, in the $ (m_{\rm{A}}, \tan \beta) $ plane from the combined likelihood analysis of HH analyses are shown. A comparison of the region excluded by the combined likelihood analysis shown in this panel with selected results from other searches for the production of heavy scalar bosons in the hMSSM, in $ \tau\tau $[64], tt[65] and WW[66] decays is shown. Also shown, are the results from one representative search for A → ZH[67] and indirect constraints obtained from measurements of the coupling strength of the observed H boson[68].

    图 27  ZH, WW fusion, ZZ fusion过程的费曼图[69]

    Fig. 27.  The Feynman diagrams of ZH, WW fusion, and ZZ fusion[69]

    图 28  正负电子对撞产生Higgs各过程的截面与对撞能量的关系[70]. 竖直虚线对应对撞能量为240 GeV

    Fig. 28.  Correlation between the cross-section of the Higgs production and the center-of-mass energy[70]. The vertical dashed line corresponds to a center-of-mass energy of 240 GeV.

    图 32  用喷注本源鉴别算法得到的Higgs稀有衰变以及奇异衰变的分支比上限, 如绿色柱状图所示[76]. CEPC (蓝色柱状图)[75]和高亮度大型强子对撞机(橙色柱状图)[80]预期的Higgs耦合的相对不确定度

    Fig. 32.  Expected upper limits on the branching ratios of rare Higgs boson decays (green bars)[76] and the relative uncertainties of Higgs couplings anticipated at CEPC (blue)[75] and HL-LHC (orange)[80].

    图 29  经过CEPC基线探测器[73]模拟的对撞能量为$ 240\, $ GeV的$ { {\rm{e}}^+{\rm{e}}^-} \to\nu\bar{\nu} {{\rm{H}}} \to\nu\bar{\nu} {\rm{gg}} $事例样本[76]

    Fig. 29.  Event display of an $ { {\rm{e}}^+{\rm{e}}^-} \to\nu\bar{\nu} {{\rm{H}}} \to\nu\bar{\nu} {\rm{gg}} $ ($ \sqrt{s} = $$ 240\; {\rm{GeV}} $) event[76] simulated and reconstructed with the CEPC baseline detector[73].

    图 30  正负电子对撞能量为240 GeV时, 利用CEPC基线探测器全模拟的$ \nu\bar{\nu} {\rm{H}}, {\rm{H}}\to {\rm{jj}} $样本, 基于ParticleNet深度学习模型训练, 在测试数据上得到的喷注味道鉴别矩阵[76]

    Fig. 30.  Confusion matrix $ M_{11} $ based on full simulated $ \nu\bar{\nu}{\rm{H}} $, $ {\rm{H}}\to {\rm{jj}} $ at 240 GeV center-of-mass energy at CEPC baseline detector[76].

    图 31  信号$ {{\rm{H}}}\to {\rm{s}}\bar{\rm{s}} $以及本底的GBDT分布[76]

    Fig. 31.  Distributions of GBDT scores for signal, $ \nu\bar{\nu} {{\rm{H}}} \to {\rm{s}}\bar{\rm{s}} $, and SM backgrounds[76].

  • [1]

    Higgs P W 1964 Phys. Lett. 12 132Google Scholar

    [2]

    Higgs P W 1964 Phys. Rev. Lett. 13 508Google Scholar

    [3]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321Google Scholar

    [4]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Lett. 13 585Google Scholar

    [5]

    Alam M, Katayama N, Kim I J, et al. 1989 Phys. Rev. D 40 712Google Scholar

    [6]

    Egli S, et al. (SINDRUM Collaboration) 1989 Phys. Lett. B 222 533Google Scholar

    [7]

    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, et al. 2003 Phys. Lett. B 565 61Google Scholar

    [8]

    Aaltonen T, et al. (CDF Collaboration, D0 Collaboration) 2012 Phys. Rev. Lett. 109 071804Google Scholar

    [9]

    Aad G, et al. (ATLAS Collaboration) 2012 Phys. Lett. B 716 1Google Scholar

    [10]

    Chatrchyan S, et al. (CMS Collaboration) 2012 Phys. Lett. B 716 30Google Scholar

    [11]

    Aad G, et al. (ATLAS Collaboration) 2022 Nature 607 52Google Scholar

    [12]

    Tumasyan A, et al. (CMS Collaboration) 2022 Nature 607 60Google Scholar

    [13]

    Sirunyan A M, et al. (CMS Collaboration) 2020 Phys. Lett. B 805 135425Google Scholar

    [14]

    Tumasyan A, et al. (CMS Collaboration) 2022 Nat. Phys. 18 1329Google Scholar

    [15]

    Aad G, et al. (ATLAS Collaboration) 2023 Phys. Rev. Lett. 131 251802Google Scholar

    [16]

    Aad G, et al. (ATLAS Collaboration) 2023 Phys. Lett. B 846 138223Google Scholar

    [17]

    Khachatryan V, et al. (CMS Collaboration) 2015 Phys. Rev. D 92 012004Google Scholar

    [18]

    Aad G, et al. (ATLAS Collaboration) 2015 Eur. Phys. J. C 75 476Google Scholar

    [19]

    Aaboud M, et al. (ATLAS Collaboration) 2018 Phys. Lett. B 784 173Google Scholar

    [20]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Rev. Lett. 120 231801Google Scholar

    [21]

    Sirunyan A M, et al. (CMS Collaboration) 2021 J. High Energy Phys. 01 148Google Scholar

    [22]

    Aad G, et al. (ATLAS Collaboration) 2021 Phys. Lett. B 812 135980Google Scholar

    [23]

    Degrassi G, Di Vita S, Elias-Miro J, Espinosa J R, Giudice G F, Isidori G, Strumia A 2012 J. High Energy Phys. 2012 98Google Scholar

    [24]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Lett. B 779 283Google Scholar

    [25]

    Aaboud M, et al. (ATLAS Collaboration) 2019 Phys. Rev. D 99 072001Google Scholar

    [26]

    Aaboud M, et al. (ATLAS Collaboration) 2018 Phys. Lett. B 786 59Google Scholar

    [27]

    Sirunyan A M, et al. (CMS Collaboration) 2018 Phys. Rev. Lett. 121 121801Google Scholar

    [28]

    Sirunyan A M, et al. (CMS Collaboration) 2023 Phys. Rev. Lett. 131 061801Google Scholar

    [29]

    Aad G, et al. (ATLAS Collaboration) 2022 Eur. Phys. J. C 82 717Google Scholar

    [30]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009Google Scholar

    [31]

    Aad G, et al. (ATLAS Collaboration) 2024 Phys. Rev. Lett. 133 101801Google Scholar

    [32]

    Aad G, et al. (ATLAS Collaboration) 2020 Phys. Rev. D 101 012002Google Scholar

    [33]

    Aad G, et al. (ATLAS Collaboration, CMS Collaboration) 2024 Phys. Rev. Lett. 132 021803Google Scholar

    [34]

    Cao Q H, Xu L X, Yan B, Zhu S H 2019 Phys. Lett. B 789 233Google Scholar

    [35]

    Andersen J R, et al. (LHC Higgs Cross Section Working Group) 2013 arXiv: 1307.1347 [hep-ph]

    [36]

    Aad G, et al. (ATLAS Collaboration) 2024 arXiv: 2402.05742 [hep-ex]

    [37]

    CMS Collaboration 2020 Combined Higgs Boson Production and Decay Measurements with up to 137fb-1 of Proton-proton Collision Data at $ \sqrt s$ = 13 TeV Report number: CMS-PAS-HIG-19-005

    [38]

    Sirunyan A M, et al. (CMS Collaboration) 2017 J. High Energy Phys. 2017 47Google Scholar

    [39]

    de Florian D, Grojean C, Maltoni F, Mariotti C, Nikitenko A, Pieri M, Savard P, Schumacher M, Tanaka R 2017 Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector Report number: CERN-2017-002-M

    [40]

    Tumasyan A, et al. (CMS Collaboration) 2023 Phys. Rev. D 108 032013Google Scholar

    [41]

    Sirunyan A M, et al. (CMS Collaboration) 2020 Phys. Rev. Lett. 125 061801Google Scholar

    [42]

    Tumasyan A, et al. (CMS Collaboration) 2022 J. High Energy Phys. 2022 12Google Scholar

    [43]

    Aad G, et al. (ATLAS Collaboration) 2023 Eur. Phys. J. C 83 563Google Scholar

    [44]

    Aad G, et al. (ATLAS Collaboration) 2020 Phys. Rev. Lett. 125 061802Google Scholar

    [45]

    Arbey A, Mahmoudi F 2021 Prog. Part. Nucl. Phys. 119 103865Google Scholar

    [46]

    Ward E 2019 LHC Detector Transverse Cross-section (ATLAS Experiment) ATLAS-PHOTO-2019-01

    [47]

    Carpenter L, DiFranzo A, Mulhearn M, Shimmin C, Tulin S, Whiteson D 2014 Phys. Rev. D 89 075017Google Scholar

    [48]

    Aaboud M, et al. (ATLAS Collaboration) 2019 J. High Energy Phys. 2019 142Google Scholar

    [49]

    Hayrapetyan A, et al. (CMS Collaboration) 2024 arXiv: 2403.16926 [hep-ex]

    [50]

    Lee T D 1973 Phys. Rev. D 8 1226Google Scholar

    [51]

    Branco G, Ferreira P, Lavoura L, Rebelo M, Sher M, Silva J P 2012 Phys. Rep. 516 1Google Scholar

    [52]

    Haber H E, Stål O 2015 Eur. Phys. J. C 75 491Google Scholar

    [53]

    Kling F, No J M, Su S 2016 J. High Energy Phys. 2016 93Google Scholar

    [54]

    Chalons G, Domingo F 2012 Phys. Rev. D 86 115024Google Scholar

    [55]

    Chen C Y, Freid M, Sher M 2014 Phys. Rev. D 89 075009Google Scholar

    [56]

    Muhlleitner M, Sampaio M O P, Santos R, Wittbrodt J 2017 J. High Energy Phys. 2017 94Google Scholar

    [57]

    Robens T, Stefaniak T, Wittbrodt J 2020 Eur. Phys. J. C 80 151Google Scholar

    [58]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 272 1Google Scholar

    [59]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 278 449Google Scholar

    [60]

    Degrassi G, Heinemeyer S, Hollik W, Slavich P, Weiglein G 2003 Eur. Phys. J. C 28 133Google Scholar

    [61]

    Djouadi A 2008 Phys. Rep. 459 1Google Scholar

    [62]

    Giudice G F, Rattazzi R, Wells J D 2001 Nucl. Phys. B 595 250Google Scholar

    [63]

    Pappadopulo D, Thamm A, Torre R, Wulzer A 2014 J. High Energy Phys. 2014 60Google Scholar

    [64]

    Tumasyan A, et al. (CMS Collaboration) 2023 J. High Energy Phys. 2023 73Google Scholar

    [65]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 171 [Erratum: 2022 J. High Energy Phys. 2022 187]

    [66]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 34Google Scholar

    [67]

    Sirunyan A M, et al. (CMS Collaboration) 2020 J. High Energy Phys. 2020 65Google Scholar

    [68]

    Sirunyan A M, et al. (CMS Collaboration) 2019 Eur. Phys. J. C 79 421Google Scholar

    [69]

    Zhu Y, Cui H, Ruan M 2022 J. High Energy Phys. 11 100Google Scholar

    [70]

    An F, Bai Y, Chen C H, et al. 2019 Chin. Phys. C 43 043002Google Scholar

    [71]

    Aryshev A, Behnke T, Berggren M, et al. 2022 arXiv: 2203.07622 [physics.acc-ph]

    [72]

    Linssen L, Miyamoto A, Stanitzki M, Weerts H 2012 arXiv: 1202.5940 [physics.ins-det]

    [73]

    Dong M, et al. (CEPC Study Group) 2018 arXiv: 1811.10545 [hep-ex]

    [74]

    Agapov I, Benedikt M, Blondel A, et al. 2022 arXiv: 2203.08310 [physics.acc-ph]

    [75]

    Cheng H, Chiu W H, Fang Y Q, et al. 2022 arXiv: 2205.08553 [hep-ph]

    [76]

    Liang H, Zhu Y, Wang Y, Che Y, Zhou C, Qu H, Ruan M 2024 Phys. Rev. Lett. 132 221802Google Scholar

    [77]

    Qu H, Gouskos L 2020 Phys. Rev. D 101 056019Google Scholar

    [78]

    Suehara T, Tanabe T 2016 Nucl. Instrum. Meth. A 808 109Google Scholar

    [79]

    Cui H, Zhao M, Wang Y, Liang H, Ruan M 2024 J. High Energy Phys. 2024 210 [Erratum: 2024 J. High Energy Phys. 2024 5, Erratum: 2024 J. High Energy Phys. 2024 119 ]

    [80]

    Cepeda M, Gori S, Ilten P, et al. 2019 arXiv: 1902.00134 [hep-ph]

  • [1] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [3] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [4] 周杰, 姚颖莉, 邵根富, 沈晓燕, 刘鹏. 基于车载通信标准街道场景的电磁散射信道模型. 物理学报, 2016, 65(14): 140501. doi: 10.7498/aps.65.140501
    [5] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [6] 韩金钟, 秦臻, 王学雷. ILC上Z玻色子与荷电top-pion对联合产生过程的研究. 物理学报, 2012, 61(4): 041201. doi: 10.7498/aps.61.041201
    [7] 全亚民, 刘大勇, 邹良剑. 多轨道Hubbard模型的隶玻色子数值算法研究. 物理学报, 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [8] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面. 物理学报, 2011, 60(2): 021101. doi: 10.7498/aps.60.021101
    [9] 张峰, 张春旭, 黄明球. 具有整体代对称性的左右对称模型中的中微子质量. 物理学报, 2010, 59(5): 3130-3135. doi: 10.7498/aps.59.3130
    [10] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [11] 李 博, 王延申. 可积开边界条件下的q形变玻色子模型. 物理学报, 2007, 56(3): 1260-1265. doi: 10.7498/aps.56.1260
    [12] 孙久勋, 章立源. s+d混合波对称性下联合模型的超导电性. 物理学报, 1996, 45(11): 1913-1920. doi: 10.7498/aps.45.1913
    [13] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数. 物理学报, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [14] 刘辽, 李鉴曾. 迹反常与时间对称性反弹宇宙模型. 物理学报, 1982, 31(12): 96-99. doi: 10.7498/aps.31.96
    [15] 侯伯宇. 各级微扰展开下自发破缺的规范无关性、么正性及可重整性. 物理学报, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
    [16] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
    [17] 杨国琛, 罗辽复, 陆埮. 中间玻色子理论Ⅰ.基本假设和对称性. 物理学报, 1966, 22(9): 1027-1031. doi: 10.7498/aps.22.1027
    [18] 高崇寿. 关于弱相互作用的中间玻色子理论和CP不守恒问题. 物理学报, 1964, 20(2): 184-187. doi: 10.7498/aps.20.184
    [19] 陈启洲. 关于弱相互作用的中间玻色子问题. 物理学报, 1964, 20(12): 1292-1294. doi: 10.7498/aps.20.1292
    [20] 杨国桢, 关洪. 关于弱作用的中间玻色子理论. 物理学报, 1964, 20(9): 928-930. doi: 10.7498/aps.20.928
计量
  • 文章访问数:  424
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-31
  • 上网日期:  2024-11-13
  • 刊出日期:  2024-12-20

/

返回文章
返回