-
高电荷态离子俘获靶原子、分子中的电子是一个多原子中心束缚态电子跃迁相关的基本原子物理过程, 所形成的高激发态离子的退激辐射对于X射线天文建模、聚变等离子体诊断及离子束与物质作用机理研究等方面至关重要. 经过不断的完善和发展, 冷靶反冲离子动量谱仪(COLTRIMS)技术已经广泛应用于测量电子俘获过程中的量子态选择布居. 基于复旦大学150 kV高电荷态离子碰撞实验平台及冷靶反冲离子动量谱仪, 本文开展了1.4—20.0 keV/u的Ar8+ 炮弹离子与He原子碰撞过程中双电子俘获量子态选择截面的系统测量, 并获得了3l 3l'至3l 7l' 双激发态的相对截面. 研究发现Ar8+-He双电子俘获过程中, 随着碰撞能量的增大, 更多的量子态转移反应通道被打开, 而且量子态选择布居的相对截面对炮弹离子能量呈现强烈的依赖关系.
-
关键词:
- 高电荷态离子 /
- 双电子俘获 /
- 量子态选择 /
- 冷靶反冲离子动量谱仪
Electron capture in the collision of highly charged ions with atoms and molecules is a fundamental process related to the electron transition between bound states belonging to two atomic-centers. The X-ray emission after electron capture is important for X-ray astrophysical modeling, fusion plasma diagnostics, and ion irradiated biophysics. In the past few decades, momentum-imaging cold-target recoil ion momentum spectroscopy has been a significantly developed technique and widely used to measure the quantum state-selective population in electron capture processes. Based on the cold target recoil ion momentum spectroscopy installed on the 150 kV highly charged ion platform in Fudan University, Shanghai City, China, the state-selectivity of double electron capture in the bombardment of 1.4–20 keV/u Ar8+ on He is measured, and the relative cross sections of the 3l 3l' to 3l 7l' double excited states are obtained. It is found that with the increase of collision energy, more quantum state-selectivity channels are open in the double electron capture of Ar8+-He collision. It is also found that the relative cross section of the quantum state population is strongly dependent on the collision energy of the projectile ion. The present measurements not only enrich the state-selective cross-sectional library and collision dynamics of highly charged ion charge exchange processes, but also provide experimental benchmarks for existing theoretical calculations.-
Keywords:
- highly charged ions /
- double electron capture /
- quantum state-selective /
- cold target recoil ion momentum spectroscopy
[1] Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar
[2] Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar
[3] Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar
[4] Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar
[5] Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar
[6] Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar
[7] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[8] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar
Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar
[9] Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar
[10] Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar
[11] Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar
[12] Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar
[13] Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar
[14] Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar
[15] Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar
[16] Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar
[17] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar
[18] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar
[19] Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar
[20] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar
Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar
[21] Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar
[22] Niehaus A 1986 J. Phys. B 19 2925Google Scholar
[23] Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar
[24] Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar
[25] Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar
[26] Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar
[27] Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar
[28] Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar
[29] Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar
[30] 曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar
Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar
[31] Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar
[32] Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar
[33] Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar
[34] 陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar
Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar
[35] Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar
-
图 2 12.0 keV/u的Ar8+与He原子碰撞中发生双电子俘获后反冲离子的一维位置谱(黑色点为测量的实验数据点, 红色实线为高斯拟合曲线)
Fig. 2. One-dimensional position spectrum of the recoil ion of double electrons capture in the 12.0 keV/u Ar8+ collision with He. The black dots represent the measured experimental data, and the red solid line represents the Gaussian fitting curve.
图 3 Ar8+与He碰撞中双电子俘获的Q值谱(黑色点为测量的实验数据点, 蓝色虚线为高斯曲线拟合, 红色实线为高斯拟合结果的总和)
Fig. 3. Measured Q spectra between Ar8+ and He. The black dots represent the measured experimental data. The blue dashed lines and red solid lines represent the Gaussian curve fitting and the sum of the Gaussian fitting results, respectively.
图 4 Ar8+与 He 碰撞中双电子俘获截面对碰撞能量的依赖关系, 实心灰色方块、蓝色三角和红色三角点为实验测量结果(实线为引导线), 虚线为Zhang等[33]的计算结果, 不同的颜色与形状代表不同的俘获通道
Fig. 4. Dependence of cross section of double electron capture into doubly excited states on collision energy in Ar8+ collision with He. The gray squares, blue triangles and red triangles are the experimentally measured results (The solid lines are used to guide the eyes), and the dashed lines are the calculated results of Zhang et al.[33].
表 1 Ar8+与He双电子俘获的n和l分辨的量子态选择相对截面(括号内为误差值(%))
Table 1. Measured relative state-selective cross sections for DEC in collisions of Ar8+ with He (Error value (%) in parentheses).
Energy/(keV·u–1) ${ nl} { n'l}'$ 3p7l 3s10l 3s6l 3p4p 3s4s 3s3d 3p2 3s3p 1.4 35.4(3.8) 26.4(2.9) 22.8(2.5) 9.1(1.2) 3.9(0.6) 2.2 32.0(3.4) 22.5(2.4) 24.2(2.6) 11.9(1.4) 7.4(0.9) 3.0 24.5(2.6) 21.5(2.3) 26.6(2.9) 15.9(1.7) 9.1(1.0) 0.6(0.4) 0.3(0.0) 4.0 19.3(2.3) 20.6(2.5) 27.0(3.0) 17.0(1.8) 12.1(1.3) 1.1(0.2) 0.4(0.2) 5.2 17.6(1.9) 19.7(2.1) 26.7(2.9) 17.3(1.9) 14.6(1.6) 2.2(0.4) 0.5(0.3) 6.4 17.4(1.9) 18.8(2.0) 24.5(2.6) 16.9(1.8) 16.9(1.8) 3.3(0.7) 0.8(0.6) 0.2(0.2) 8.0 17.1(1.8) 18.6(2.0) 22.0(2.4) 16.0(1.7) 18.8(2.0) 4.7(0.6) 1.3(0.5) 0.4(0.3) 10.0 15.2(1.7) 18.1(2.0) 19.1(2.1) 17.6(1.9) 19.4(2.1) 6.8(1.0) 2.2(0.7) 0.7(0.5) 12.0 14.6(1.6) 17.1(2.0) 16.4(1.8) 19.1(2.1) 20.2(2.1) 7.8(1.0) 2.7(0.6) 1.1(0.3) 14.4 12.0(1.4) 16.0(1.8) 16.7(1.8) 21.8(2.4) 19.3(2.1) 9.1(1.1) 2.2(0.7) 1.8(0.5) 17.0 10.6(1.2) 15.1(1.7) 16.8(1.8) 24.2(2.6) 18.8(2.1) 8.9(1.2) 1.6(0.5) 2.9(0.5) 20.0 11.3(1.3) 16.6(1.9) 15.6(1.9) 28.7(3.5) 15.1(2.0) 8.6(1.4) 1.3(0.9) 2.3(0.5) -
[1] Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar
[2] Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar
[3] Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar
[4] Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar
[5] Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar
[6] Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar
[7] Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar
[8] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar
Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar
[9] Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar
[10] Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar
[11] Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar
[12] Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar
[13] Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar
[14] Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar
[15] Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar
[16] Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar
[17] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar
[18] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar
[19] Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar
[20] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar
Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar
[21] Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar
[22] Niehaus A 1986 J. Phys. B 19 2925Google Scholar
[23] Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar
[24] Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar
[25] Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar
[26] Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar
[27] Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar
[28] Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar
[29] Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar
[30] 曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar
Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar
[31] Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar
[32] Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar
[33] Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar
[34] 陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar
Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar
[35] Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar
计量
- 文章访问数: 338
- PDF下载量: 45
- 被引次数: 0