搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究

吴怡娇 孟天鸣 张献文 谭旭 马蒲芳 殷浩 任百惠 屠秉晟 张瑞田 肖君 马新文 邹亚明 魏宝仁

引用本文:
Citation:

高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究

吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁
cstr: 32037.14.aps.73.20241290

Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He

Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren
cstr: 32037.14.aps.73.20241290
PDF
HTML
导出引用
  • 高电荷态离子俘获靶原子、分子中的电子是一个多原子中心束缚态电子跃迁相关的基本原子物理过程, 所形成的高激发态离子的退激辐射对于X射线天文建模、聚变等离子体诊断及离子束与物质作用机理研究等方面至关重要. 经过不断的完善和发展, 冷靶反冲离子动量谱仪(COLTRIMS)技术已经广泛应用于测量电子俘获过程中的量子态选择布居. 基于复旦大学150 kV高电荷态离子碰撞实验平台及冷靶反冲离子动量谱仪, 本文开展了1.4—20.0 keV/u的Ar8+ 炮弹离子与He原子碰撞过程中双电子俘获量子态选择截面的系统测量, 并获得了3l 3l'至3l 7l' 双激发态的相对截面. 研究发现Ar8+-He双电子俘获过程中, 随着碰撞能量的增大, 更多的量子态转移反应通道被打开, 而且量子态选择布居的相对截面对炮弹离子能量呈现强烈的依赖关系.
    Electron capture in the collision of highly charged ions with atoms and molecules is a fundamental process related to the electron transition between bound states belonging to two atomic-centers. The X-ray emission after electron capture is important for X-ray astrophysical modeling, fusion plasma diagnostics, and ion irradiated biophysics. In the past few decades, momentum-imaging cold-target recoil ion momentum spectroscopy has been a significantly developed technique and widely used to measure the quantum state-selective population in electron capture processes. Based on the cold target recoil ion momentum spectroscopy installed on the 150 kV highly charged ion platform in Fudan University, Shanghai City, China, the state-selectivity of double electron capture in the bombardment of 1.4–20 keV/u Ar8+ on He is measured, and the relative cross sections of the 3l 3l' to 3l 7l' double excited states are obtained. It is found that with the increase of collision energy, more quantum state-selectivity channels are open in the double electron capture of Ar8+-He collision. It is also found that the relative cross section of the quantum state population is strongly dependent on the collision energy of the projectile ion. The present measurements not only enrich the state-selective cross-sectional library and collision dynamics of highly charged ion charge exchange processes, but also provide experimental benchmarks for existing theoretical calculations.
      通信作者: 张瑞田, zhangrt@impcas.ac.cn ; 魏宝仁, brwei@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602504)、国家自然科学基金(批准号: 12204110, 12374227, U1832201)、上海市重点学科建设项目(批准号: B107)和中国科学院战略性先导科技专项(B类)(批准号: XDB34020302)资助的课题.
      Corresponding author: Zhang Rui-Tian, zhangrt@impcas.ac.cn ; Wei Bao-Ren, brwei@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602504), the National Natural Science Foundation of China (Grant Nos. 12204110, 12374227, U1832201), the Shanghai Municipal Key Discipline Construction Project Funding, China (Grant No. B107), and the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Class B) (Grant No. XDB34020302).
    [1]

    Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar

    [2]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [3]

    Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar

    [4]

    Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar

    [5]

    Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar

    [6]

    Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [7]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [8]

    徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar

    [9]

    Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar

    [10]

    Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar

    [11]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [12]

    Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar

    [13]

    Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar

    [14]

    Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar

    [15]

    Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar

    [16]

    Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [19]

    Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar

    [20]

    吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar

    Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar

    [21]

    Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [22]

    Niehaus A 1986 J. Phys. B 19 2925Google Scholar

    [23]

    Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar

    [24]

    Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar

    [25]

    Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar

    [26]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [27]

    Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar

    [28]

    Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar

    [29]

    Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar

    [30]

    曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar

    Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar

    [31]

    Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar

    [32]

    Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar

    [33]

    Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar

    [34]

    陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar

    Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar

    [35]

    Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar

  • 图 1  复旦大学150 kV高电荷态离子平台及冷靶反冲离子动量谱仪装置示意图

    Fig. 1.  Schematic diagram of the COLTRIMS apparatus at 150 kV high voltage platform in Fudan University.

    图 2  12.0 keV/u的Ar8+与He原子碰撞中发生双电子俘获后反冲离子的一维位置谱(黑色点为测量的实验数据点, 红色实线为高斯拟合曲线)

    Fig. 2.  One-dimensional position spectrum of the recoil ion of double electrons capture in the 12.0 keV/u Ar8+ collision with He. The black dots represent the measured experimental data, and the red solid line represents the Gaussian fitting curve.

    图 3  Ar8+与He碰撞中双电子俘获的Q值谱(黑色点为测量的实验数据点, 蓝色虚线为高斯曲线拟合, 红色实线为高斯拟合结果的总和)

    Fig. 3.  Measured Q spectra between Ar8+ and He. The black dots represent the measured experimental data. The blue dashed lines and red solid lines represent the Gaussian curve fitting and the sum of the Gaussian fitting results, respectively.

    图 4  Ar8+与 He 碰撞中双电子俘获截面对碰撞能量的依赖关系, 实心灰色方块、蓝色三角和红色三角点为实验测量结果(实线为引导线), 虚线为Zhang等[33]的计算结果, 不同的颜色与形状代表不同的俘获通道

    Fig. 4.  Dependence of cross section of double electron capture into doubly excited states on collision energy in Ar8+ collision with He. The gray squares, blue triangles and red triangles are the experimentally measured results (The solid lines are used to guide the eyes), and the dashed lines are the calculated results of Zhang et al.[33].

    表 1  Ar8+与He双电子俘获的nl分辨的量子态选择相对截面(括号内为误差值(%))

    Table 1.  Measured relative state-selective cross sections for DEC in collisions of Ar8+ with He (Error value (%) in parentheses).

    Energy/(keV·u–1) ${ nl} { n'l}'$
    3p7l 3s10l 3s6l 3p4p 3s4s 3s3d 3p2 3s3p
    1.4 35.4(3.8) 26.4(2.9) 22.8(2.5) 9.1(1.2) 3.9(0.6)
    2.2 32.0(3.4) 22.5(2.4) 24.2(2.6) 11.9(1.4) 7.4(0.9)
    3.0 24.5(2.6) 21.5(2.3) 26.6(2.9) 15.9(1.7) 9.1(1.0) 0.6(0.4) 0.3(0.0)
    4.0 19.3(2.3) 20.6(2.5) 27.0(3.0) 17.0(1.8) 12.1(1.3) 1.1(0.2) 0.4(0.2)
    5.2 17.6(1.9) 19.7(2.1) 26.7(2.9) 17.3(1.9) 14.6(1.6) 2.2(0.4) 0.5(0.3)
    6.4 17.4(1.9) 18.8(2.0) 24.5(2.6) 16.9(1.8) 16.9(1.8) 3.3(0.7) 0.8(0.6) 0.2(0.2)
    8.0 17.1(1.8) 18.6(2.0) 22.0(2.4) 16.0(1.7) 18.8(2.0) 4.7(0.6) 1.3(0.5) 0.4(0.3)
    10.0 15.2(1.7) 18.1(2.0) 19.1(2.1) 17.6(1.9) 19.4(2.1) 6.8(1.0) 2.2(0.7) 0.7(0.5)
    12.0 14.6(1.6) 17.1(2.0) 16.4(1.8) 19.1(2.1) 20.2(2.1) 7.8(1.0) 2.7(0.6) 1.1(0.3)
    14.4 12.0(1.4) 16.0(1.8) 16.7(1.8) 21.8(2.4) 19.3(2.1) 9.1(1.1) 2.2(0.7) 1.8(0.5)
    17.0 10.6(1.2) 15.1(1.7) 16.8(1.8) 24.2(2.6) 18.8(2.1) 8.9(1.2) 1.6(0.5) 2.9(0.5)
    20.0 11.3(1.3) 16.6(1.9) 15.6(1.9) 28.7(3.5) 15.1(2.0) 8.6(1.4) 1.3(0.9) 2.3(0.5)
    下载: 导出CSV
  • [1]

    Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911Google Scholar

    [2]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [3]

    Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31Google Scholar

    [4]

    Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24Google Scholar

    [5]

    Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389Google Scholar

    [6]

    Hoekstra R, Anderson H, Bliek F W, von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [7]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [8]

    徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文 2021 物理学报 70 080702Google Scholar

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F, Su M G, Ma X W 2021 Acta Phys. Sin. 70 080702Google Scholar

    [9]

    Meng T, Ma M X, Tu B, Ma P, Zhang Y W, Liu L, Xiao J, Yao K, Zou Y, Wu Y, Wang J G, Wei B 2023 New J. Phys. 25 093026Google Scholar

    [10]

    Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714Google Scholar

    [11]

    Roncin P, Barat M, Laurent H 1986 Eur. Phys. Lett. 2 371Google Scholar

    [12]

    Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902Google Scholar

    [13]

    Mack M, Nijland J H, Straten P V D, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846Google Scholar

    [14]

    Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293Google Scholar

    [15]

    Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987Google Scholar

    [16]

    Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201Google Scholar

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [19]

    Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759Google Scholar

    [20]

    吕瑛, 陈熙萌, 曹柱荣, 吴卫东 2010 物理学报 59 3892Google Scholar

    Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892Google Scholar

    [21]

    Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554Google Scholar

    [22]

    Niehaus A 1986 J. Phys. B 19 2925Google Scholar

    [23]

    Olson R E, Salop A 1976 Phys. Rev. A 14 579Google Scholar

    [24]

    Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039Google Scholar

    [25]

    Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79Google Scholar

    [26]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [27]

    Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321Google Scholar

    [28]

    Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071Google Scholar

    [29]

    Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203Google Scholar

    [30]

    曹柱荣, 蔡晓红, 于得洋, 杨威, 卢荣春, 邵曹杰, 陈熙萌 2004 物理学报 53 2943Google Scholar

    Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943Google Scholar

    [31]

    Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819Google Scholar

    [32]

    Zhang R T, Gao J W, Zhang Y W, Guo D L, Gao Y, Zhu X L, Xu J W, Zhao D M, Yan S, Xu S, Zhang S F, Wu Y, Wang J G, Ma X 2023 Phys. Rev. Res. 5 023123Google Scholar

    [33]

    Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809Google Scholar

    [34]

    陈兰芳, 马新文, 朱小龙 2006 物理学报 55 6347Google Scholar

    Chen L F, Ma X W, Zhu X L 2006 Acta Phys. Sin. 55 6347Google Scholar

    [35]

    Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292Google Scholar

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响. 物理学报, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [7] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [8] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [9] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [10] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射. 物理学报, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [11] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究. 物理学报, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [12] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] 朱小龙, 马新文, 李斌, 刘惠萍, 陈兰芳, 张少锋, 冯文天, 沙杉, 钱东斌, 曹士娉, 张大成. 低能He2+-He反应中单电子俘获微分散射过程的实验研究. 物理学报, 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [14] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [15] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [17] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [18] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
计量
  • 文章访问数:  339
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2024-10-10
  • 上网日期:  2024-11-13
  • 刊出日期:  2024-12-20

/

返回文章
返回