搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究

隋鹏翔

引用本文:
Citation:

颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究

隋鹏翔

Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method

Sui Peng-xiang
PDF
HTML
导出引用
  • 采用无量纲格子玻尔兹曼(non-dimensionla lattice Boltzmann method, NDLBM)对方腔内纳米流体的自然对流进行数值模拟, 讨论克努森数($10^{-6} \leqslant Kn_{{\rm{f}},{\rm{s}}} \leqslant 10^4$)、瑞利数($10^3 \leqslant Ra_{{\rm{f}},{\rm{L}}} \leqslant 10^6$)、颗粒体积分数($10^{-2} \leqslant $$ \phi_{\rm{s}} \leqslant 10^{-1}$)等参数对纳米流体流动和传热的影响. 结果表明: 在不同$Ra_{{\rm{f}},{\rm{L}}}$下, 颗粒粒径对传热效率的影响是不同的.在低$Ra_{{\rm{f}},{\rm{L}}}$的热传导区间, 颗粒粒径对传热影响较小; 在高$Ra_{{\rm{f}},{\rm{L}}}$的热对流区间, 较大的颗粒粒径显著提升了流动强度和传热效率. 若保持$Ra_{{\rm{f}},{\rm{L}}}$和$\phi_{\rm{s}}$不变, 随着颗粒粒径的减小, 纳米流体的传热方式由热传导转变为热对流. 此外, 针对高$Ra_{{\rm{f}},{\rm{L}}}$的热对流区间, 在兼顾了导热和流动性的情况下, 最大传热效率所对应的颗粒体积分数为$\phi_{\rm{s}} = 8 {\text{%}}$. 最后, 通过分析平均努塞尔数$\overline {Nu}_{{\rm{f}},{\rm{L}}}$和纳米流体相较于基液增加传热率$Re_{{\rm{n}},{\rm{f}}}$随不同无量纲参数变化的三维等值面图, 发现$\overline {Nu}_{{\rm{f}},{\rm{L}}}$和$Re_{{\rm{n}},{\rm{f}}}$的极值均出现在颗粒粒径为$Kn_{{\rm{f}},{\rm{s}}} = 10^{-1}$. 基于数值结果, 构建$\overline {Nu}_{{\rm{f}},{\rm{L}}}$与$Kn_{{\rm{f}},{\rm{s}}}$、$Ra_{{\rm{f}},{\rm{L}}}$、$\phi_{\rm{s}}$之间的函数关系式, 揭示了这些无量纲参数对传热性能的影响.
    In this work, numerical simulation of natural convection of nanofluids within a square enclosure were investigated by using the non-dimensional lattice Boltzmann method (NDLBM). The effects of key governing parameters Knudsen number ($10^{-6} \leqslant Kn_{{\rm{f}},{\rm{s}}} \leqslant 10^4$), Rayleigh number ($10^3 \leqslant Ra_{{\rm{f}},{\rm{L}}} \leqslant 10^6$), and nanoparticle volume fraction ($10^{-2} \leqslant \phi_{\rm{s}} \leqslant 10^{-1}$) on the heat and mass transfer of nanofluids were discussed. The results show that in the low $Ra_{{\rm{f}},{\rm{L}}}$ conductive dominated regime, the nanoparticle size has little effect on heat transfer, whereas in the high $Ra_{{\rm{f}},{\rm{L}}}$ convective dominated regime, larger nanoparticle sizes significantly enhance flow intensity and heat transfer efficiency. As fixed $Ra_{{\rm{f}},{\rm{L}}}$ and $\phi_{\rm{s}}$, the heat transfer patterns change from conduction to convection dominated regimes with increasing $Kn_{{\rm{f}},{\rm{s}}}$. The influence of nanoparticle volume fraction was also investigated, and in convection dominated regime, the maximum heat transfer efficiency was achieved when $\phi_{\rm{s}} = 8 {\text{%}}$, balancing both thermal conduction and drag fore of nanofluids. Additionally, by analyzing the full maps of mean Nusselt number ($\overline {Nu}_{{\rm{f}},{\rm{L}}}$) and the enhancement ratio related to the base fluid ($Re_{{\rm{n}},{\rm{f}}}$), the maximum values of $\overline {Nu}_{{\rm{f}},{\rm{L}}}$ and $Re_{{\rm{n}},{\rm{f}}}$ occur when the nanoparticle size is $Kn_{{\rm{f}},{\rm{s}}} = 10^{-1}$ for both conductive and convective dominated regimes. To capture the effects of all key governing parameters on $\overline {Nu}_{{\rm{f}},{\rm{L}}}$, a new empirical correlation has been derived from the numerical results, providing deeper insights into how these parameters influence heat transfer performance.
  • 图 1  物理模型和边界条件示意图

    Fig. 1.  Sketch of the problem and boundary conditions.

    图 2  不同网格数对平均努塞尔数$ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $的影响

    Fig. 2.  The influence of different mesh grid on the mean Nusselt number $ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $.

    图 3  平均努塞尔数$ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $与其他文献数值结果[32,41]对比

    Fig. 3.  Comparison of mean Nusset number $ \overline{Nu}_{{{\rm{f}}, {\rm{L}}}} $ obtained by present study and other numerical results[32,41].

    图 4  在固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $, 不同颗粒粒径$ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $下的无量纲速度场流线分布图像 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    Fig. 4.  Dimensionless streamlines for different nanoparticle size $ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $ and Rayleigh number $ 1 \times $$ 10^{3} Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ with fixed $ \phi_s = 8 {\text{%}} $: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    图 5  在固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $, 不同颗粒粒径$ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $下的无量纲温度场等温线分布图像 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    Fig. 5.  Dimensionless isotherms for different nanoparticle size $ 1 \times 10^{-4} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $ and Rayleigh number $ 1 \times $$ 10^{3} Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ with fixed $ \phi_s = 8 {\text{%}} $: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{3} $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{4} $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{5} $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^{6} $

    图 6  不同颗粒体积分数和瑞利数下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与克努森数$ 1 \times 10^{-6} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^4 $关系 (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^3 $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^4 $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^5 $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^6 $

    Fig. 6.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Knudsen number $ 1 \times 10^{-6} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^4 $ with different volume fraction and Rayleigh number: (a) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^3 $; (b) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^4 $; (c) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^5 $; (d) $ Ra_{{{\rm{f}}, {\rm{L}}}} = 1 \times 10^6 $.

    图 7  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8{\text{%}} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与克努森数关系

    Fig. 7.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Knudsen number with different Rayleigh number $ 1 \times 10^{3} \leqslant $$ Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8{\text{%}} $.

    图 8  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8{\text{%}} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与克努森数关系

    Fig. 8.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus Knudsen number with different Rayleigh number $ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant $$ 1 \times 10^6 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8{\text{%}} $.

    图 9  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒粒径$ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与颗粒体积分数关系

    Fig. 9.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus nanoparticle volume fraction with different Rayleigh number $ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle size $ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $.

    图 10  不同瑞利数$ 1 \times 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $和固定颗粒粒径$ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与颗粒体积分数关系

    Fig. 10.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus nanoparticle volume fraction with different Rayleigh number $ 1 \times $$ 10^{3} \leqslant Ra_{{{\rm{f}}, {\rm{L}}}} \leqslant 1 \times 10^6 $ and fixed nanoparticle size $ Kn_{{\rm{f}}, {\rm{s}}} = 10^{-1} $.

    图 11  不同克努森数$ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $下, 平均努塞尔数$ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $与瑞利数关系

    Fig. 11.  The mean Nusselt number $ \overline {Nu}_{{{\rm{f}}, {\rm{L}}}} $ versus Rayleigh number with different Knudsen number $ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant $$ 1 \times 10^2 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8 {\text{%}} $.

    图 12  不同克努森数$ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant 1 \times 10^2 $和固定颗粒体积分数$ \phi_{\rm{s}} = 8 {\text{%}} $下, 纳米流体相较于基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $与瑞利数关系

    Fig. 12.  The enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ versus Rayleigh number with different Knudsen number $ 1 \times 10^{-3} \leqslant Kn_{{\rm{f}}, {\rm{s}}} \leqslant $$ 1 \times 10^2 $ and fixed nanoparticle volume fraction $ \phi_{\rm{s}} = 8 {\text{%}} $.

    图 13  全参数范围下平均努塞尔数的对数函数$ \lg (\overline {Nu}_{{{\rm{f}}, {\rm{L}}}}) = $$ l \lg (\dfrac{{{k_{\rm{n}}}}}{{{k_{\rm{f}}}}}\overline {Nu}_{{{\rm{n}}, {\rm{L}}}}) $ (a) 和纳米流体相较基液传热增加率$ Re_{{\rm{n}}, {\rm{f}}} $ (b) 随不同克努森数$ Kn_{{\rm{f}}, {\rm{s}}} $、瑞利数$ Ra_{{{\rm{f}}, {\rm{L}}}} $、颗粒体积分数$ \phi_{\rm{s}} $变化的三维等值面图

    Fig. 13.  The three dimensional isosurfaces of logarithmic function of mean Nusselt number $ \lg (\overline {Nu}_{{{\rm{f}}, {\rm{L}}}}) = \lg (\dfrac{{{k_{\rm{n}}}}}{{{k_{\rm{f}}}}}\overline {Nu}_{{{\rm{n}}, {\rm{L}}}}) $ (a) and enhancement ratio $ Re_{{\rm{n}}, {\rm{f}}} $ (b) over the full parameter range as a function of Knudsen number $ Kn_{{\rm{f}}, {\rm{s}}} $, Rayleigh number $ Ra_{{{\rm{f}}, {\rm{L}}}} $, and nanoparticle volume fraction $ \phi_{\rm{s}} $.

    表 1  水和氧化铝纳米颗粒的物性参数[38,39]

    Table 1.  Physical properties of the water and ${{\rm{Al}}_2{\rm{O}}_3}$ nanoparticle[38,39].

    ρ/$\mathrm{kg \cdot m^{-3}}$$c_{p}$/$\mathrm {J \cdot kg^{-1} \cdot K^{-1}}$k/$\mathrm{W \cdot m^{-1} \cdot K^{-1}}$λ/$\mathrm{nm}$
    997.141790.6130.3
    ${{\rm{Al}}_2{\rm{O}}_3}$纳米颗粒39707654035
    下载: 导出CSV
  • [1]

    Wang X, Song Y, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Cui X, Said Z, Zhou Z 2024 Int. J. Adv. Manuf. Technol. 131 3113Google Scholar

    [2]

    Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun WSW, Najafi G, Mofijur M, Mazlan M 2021 Sustain. Energy Technol. Assess. 44 101058

    [3]

    Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, Babar H 2022 Phys. Rep. 946 1Google Scholar

    [4]

    Smaisim GF, Mohammed DB, Abdulhadi AM, Uktamov KF, Alsultany FH, Izzat SE, Ansari MJ, Kzar HH, Al-Gazally ME, Kianfar E 2022 J. Sol-Gel Sci. Technol. 104 1Google Scholar

    [5]

    肖波齐, 范金土, 蒋国平, 陈玲霞 2012 物理学报 61 317Google Scholar

    Xiao B, Fan J, Jiang G, Chen L 2012 Acta Phys. Sin. 61 317Google Scholar

    [6]

    Azmi WH, Sharma KV, Mamat R, Najafi G, Mohamad MS 2016 Renewable Sustainable Energy Rev. 53 1046Google Scholar

    [7]

    Wang X, Xu X, Choi SUS 1999 J. Thermophys. Heat Transfer 13 474Google Scholar

    [8]

    Das SK, Putra N, Thiesen P, Roetzel W 2003 J. Heat Transfer 125 567Google Scholar

    [9]

    Nguyen CT, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Minsta HA 2008 Int. J. Therm. Sci. 47 103Google Scholar

    [10]

    Maxwell JC 1982 A Treatise on Electricity and Magnetism (Vol. 2) (London Oxford University Press) pp 173-215

    [11]

    Nan CW, Shi Z, Lin Y 2003 Chem. Phys. Lett. 375 666Google Scholar

    [12]

    Mintsa HA, Roy G, Nguyen CT, Doucet D 2009 Int. J. Therm. Sci. 48 363Google Scholar

    [13]

    Brinkman HC 1952 J. Chem. Phys. 20 571Google Scholar

    [14]

    Batchelor GK 1977 J. Fluid Mech. 83 97Google Scholar

    [15]

    Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Minsta HA 2007 Int. J. Heat Fluid Flow 28 1492Google Scholar

    [16]

    Majumdar A 1993 J. Heat Transfer 115 7Google Scholar

    [17]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [18]

    Su Y, Davidson JH 2018 Int. J. Heat Mass Transfer 127 303Google Scholar

    [19]

    Chambre PA, Schaaf SA 1961 Flow of Rarefied Gases (Princeton University Press) pp 78-146.

    [20]

    Sui P, Su Y, Sin V, Davidson JH 2022 Int. J. Heat Mass Transfer 187 122541Google Scholar

    [21]

    Zarki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, Rossi DD 2015 Adv. Powder Technol. 26 935Google Scholar

    [22]

    Sabour M, Ghalambaz M, Chamkha A 2017 Int. J. Numer. Methods Heat Fluid Flow 27 1504Google Scholar

    [23]

    Paul TC, Morshed A, Fox EB, Khan JA 2017 Int. J. Heat Mass Transfer 28 753

    [24]

    Liu F, Wang L 2009 Int. J. Heat Mass Transfer 52 5849Google Scholar

    [25]

    Zahmatkesh I, Sheremet M, Yang L, Heris SZ, Sharifpur M, Meyer JP, Ghalambaz M, Wongwises S, Jing D, Mahian O 2021 J. Mol. Liq. 321 114430Google Scholar

    [26]

    Trodi A, Benhamza MEH 2017 Chem. Eng. Commun. 204 158Google Scholar

    [27]

    Sheikhzadeh GA, Aghaei A, Soleimani S 2018 Challenges Nano Micro Scale Sci. Technol. 6 27

    [28]

    Dogonchi AS, Hashemi-Tilehnoee M, Waqas M, Seyyedi SM, Animasaun IL, Ganji DD 2020 Phys. A (Amsterdam, Neth.) 540 123034Google Scholar

    [29]

    Tarokh A, Mohamad A, Jiang L 2013 Numer. Heat Transfer, Part A 63 159Google Scholar

    [30]

    张贝豪, 郑林 2020 物理学报 69 164401Google Scholar

    Zhang B, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [31]

    Su Y, Sui P, Davidson JH 2022 Renew. Energy 184 712Google Scholar

    [32]

    Lai F, Yang Y 2011 Int. J. Therm. Sci. 50 1930Google Scholar

    [33]

    Sheikholeslami M, Gorji-Bandpy M, Domairry G 2013 Appl. Math. Mech. 34 833Google Scholar

    [34]

    齐聪, 何光艳, 李意民, 何玉荣 2015 物理学报 64 328Google Scholar

    Qi C, He G, Li Y, He Y 2015 Acta Phys. Sin. 64 328Google Scholar

    [35]

    Taher MA, Kim HD, Lee YW 2017 Heat Transfer Res. 48 1025Google Scholar

    [36]

    袁俊杰, 叶欣, 单彦广 2021 计算物理 38 57

    Yuan J, Ye X, Shan Y 2021 Chinese Journal of Computational Physics 38 57

    [37]

    Ganji DD, Malvandi A 2014 Powder Technol. 263 50Google Scholar

    [38]

    Hwang KS, Lee JH, Jang SP 2009 Int. J. Heat Mass Transfer 50 4003

    [39]

    Wang D, Cheng P, Quan X 2019 Int. J. Heat Mass Transfer 130 1358Google Scholar

    [40]

    Hua YC, Cao BY 2016 Int. J. Heat Mass Transfer 92 995Google Scholar

    [41]

    Ho CJ, Chen MW, Li ZW 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [42]

    Li CH, Peterson GP 2007 J. Appl. Phys. 101 044312Google Scholar

    [43]

    Chon CH, Kihm KD, Lee SP 2005 Appl. Phys. Lett. 87 153107Google Scholar

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.72.20222421
    [2] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究. 物理学报, doi: 10.7498/aps.72.20230495
    [3] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, doi: 10.7498/aps.69.20191508
    [4] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.69.20200308
    [5] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, doi: 10.7498/aps.68.20181740
    [6] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.68.20181665
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, doi: 10.7498/aps.65.244401
    [8] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, doi: 10.7498/aps.64.196601
    [9] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, doi: 10.7498/aps.64.215201
    [10] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, doi: 10.7498/aps.64.154401
    [11] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟. 物理学报, doi: 10.7498/aps.64.024703
    [12] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, doi: 10.7498/aps.63.224701
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.62.120502
    [14] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, doi: 10.7498/aps.62.024703
    [15] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, doi: 10.7498/aps.62.144704
    [16] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析. 物理学报, doi: 10.7498/aps.61.154401
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.59.3394
    [18] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, doi: 10.7498/aps.58.285
    [19] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理. 物理学报, doi: 10.7498/aps.58.2513
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探. 物理学报, doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  201
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-28

/

返回文章
返回