搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍同位素链原子核低能四极态的微观研究

孙帅 安荣 祁淼 曹李刚 张丰收

引用本文:
Citation:

镍同位素链原子核低能四极态的微观研究

孙帅, 安荣, 祁淼, 曹李刚, 张丰收
cstr: 32037.14.aps.74.20240991

Microscopic study on low-energy quadrupole states in Ni isotope chain atomic nuclei

SUN Shuai, AN Rong, QI Miao, CAO Ligang, ZHANG Fengshou
cstr: 32037.14.aps.74.20240991
PDF
HTML
导出引用
  • 利用Skyrme HF+BCS理论以及自洽的QRPA方法研究了镍同位素链原子核的第一个2+态以及矮四极态的性质随中子数增加的演化情况. 研究中分别采用了SGII, SLy5以及SkM*三种能量密度泛函以及密度依赖的零程对相互作用. 计算得到的镍同位素链原子核第一个2+态的激发能以及电磁跃迁强度能较好地再现实验值. 发现$^{70—76}{\rm{Ni}}$的同位旋标量矮四极态共振能量 (跃迁强度) 随着中子数增加而降低 (增加). 这是由于中子$1{{\mathrm{g}}}_{9/2}$态的占有概率的增加, 由该中子态产生的准粒子激发组态占比增加, 组态激发由质子主导渐变为由中子主导产生. 并发现镍同位素链原子核矮四极态对壳结构的改变比较敏感, 可以为丰中子核的壳演化提供信息.
    This work mainly investigates the properties of the low-energy quadrupole strength in Ni isotopes, especially the evolution of the pygmy quadrupole states with the increase of neutron number. And the effect of shell evolution on the pygmy resonance is also discussed in detail. Based on the Skyrme Hartree-Fock+Bardeen-Cooper-Schrieffer (HF+BCS) theory and the self-consistent quasiparticle random phase approximation (RPA) method, the evolution in the nickel isotope chain with the increase of neutron number is studied. And in the calculations, three effective Skyrme interactions, namely SGII, SLy5 and SKM*, and a density-dependent zero-range type force are adopted. The properties of the first 2+ state in Ni isotopes are studied. A good description on the experimental excited energies of the first 2+ states are achieved, and the SGII and SLy5 can well describe the reduced electric transition probabilities for $^{58-68}{\rm{Ni}}$. It is found that the energy value of the first 2+ state for $^{68}{\rm{Ni}}$ and $^{78}{\rm{Ni}}$ are obviously high than those of other nuclei, reflecting the obvious shell effect. In addition to the first 2+ states, pygmy quadrupole states between 3 MeV and 5 MeV with relatively large electric transition probabilities are evidently found for $^{70-76}{\rm{Ni}}$ in the isoscalar quadruple strength distribution. The pygmy quadrupole states have the energy values decreasing with the number of neutrons increasing, but their strengths increase gradually. Therefore, they are more sensitive to the change in the shell structure. This is due to the fact that the gradual filling of the neutron level $1{{\mathrm{g}}}_{9/2}$ has a significant effect on the pygmy quadrupole states of $^{70-76}{\rm{Ni}}$, and it leads to switching from proton-dominated excitations to neutron-dominated ones. The pygmy quadrupole states for $^{70-76}{\rm{Ni}}$ are sensitive to the proton and neutron shell gaps, so they can provide the information about the shell evolution in neutron-rich nuclei.
      通信作者: 曹李刚, caolg@bnu.edu.cn ; 张丰收, fszhang@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275025, 11975096, 12135004, 11961141004)和中央高校基本科研业务费专项资金(批准号: 2020NTST06) 资助的课题.
      Corresponding author: CAO Ligang, caolg@bnu.edu.cn ; ZHANG Fengshou, fszhang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275025, 11975096, 12135004, 11961141004) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020NTST06).
    [1]

    Paar N, Vretenar D, Khan E, Colò G 2007 Rep. Prog. Phys. 70 691Google Scholar

    [2]

    Garg U, Colò G 2015 Prog. Part. Nucl. Phys. 84 124Google Scholar

    [3]

    Horowitz C J, Pollock S J, Souder P A, Michaels R 2001 Phys. Rev. C 63 025501Google Scholar

    [4]

    Roca-Maza X, Cao L G, Colò G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [5]

    Chen L W, Ko C M, Li B A 2005 Phys. Rev. C 72 064309Google Scholar

    [6]

    Fang D Q 2023 Nucl. Tech. 46 080016Google Scholar

    [7]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [8]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [9]

    Ma C W, Liu Y P, Wei H L, Pu J, Cheng K X, Wang Y T 2022 Nucl. Sci. Tech. 33 6Google Scholar

    [10]

    Ren Z Z, Mittig W, Chen B Q, Ma Z Y 1995 Phys. Rev. C 52 R20(RGoogle Scholar

    [11]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [12]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [13]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [14]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [15]

    Piekarewicz J 2006 Phys. Rev. C 73 044325Google Scholar

    [16]

    Vretenar D, Paar N, Ring P, Lalazissis G A 2001 Phys. Rev. C 63 047301Google Scholar

    [17]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [18]

    Sun S, Yu R Q, Cao L G, Zhang C L, Zhang F S 2024 Eur. Phys. J. A 60 61Google Scholar

    [19]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [20]

    Pei J C, Kortelainen M, Zhang Y N, Xu F R 2014 Phys. Rev. C 90 051304Google Scholar

    [21]

    Khan E, Paar N, Vretenar D, Cao L G, Sagawa H, Colò G 2013 Phys. Rev. C 87 064311Google Scholar

    [22]

    Tao C, Ma Y G, Zhang G Q, Cao X G, Fang D Q, Wang H W 2013 Nucl. Sci. Tech. 24 030502Google Scholar

    [23]

    Zhang Z, Chen L W 2014 Phys. Rev. C 90 064317Google Scholar

    [24]

    Cao L G, Ma Z Y 2008 Chin. Phys. Lett. 25 1625Google Scholar

    [25]

    Cortés M L, Rodriguez W, Doornenbal P, et al. 2020 Phys. Lett. B 800 135071Google Scholar

    [26]

    Allmond J M, Brown B A, Stuchbery A E, et al. 2014 Phys. Rev. C 90 034309Google Scholar

    [27]

    Marchi T, de Angelis G, Valiente-Dobón J J, et al. 2014 Phys. Rev. Lett. 113 182501Google Scholar

    [28]

    Pellegri L, Bracco A, Tsoneva N, et al. 2015 Phys. Rev. C 92 014330Google Scholar

    [29]

    Spieker M, Tsoneva N, Derya V, et al. 2016 Phys. Lett. B 752 102Google Scholar

    [30]

    Yüksel E, Colò G, Khan E, Niu Y F 2018 Phys. Rev. C 97 064308Google Scholar

    [31]

    Tsoneva N, Lenske H 2011 Phys. Lett. B 695 174Google Scholar

    [32]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [33]

    Ansari A, Ring P 2006 Phys. Rev. C 74 054313Google Scholar

    [34]

    Colò G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [35]

    Liu L, Liu S, Zhang S S, Cao L G 2021 Chin. Phys. C 45 044105Google Scholar

    [36]

    Shang X L, Zuo W 2013 Phys. Rev. C 88 025806Google Scholar

    [37]

    Yan Y J, Shang X L, Dong J M, Zuo W 2021 Chin. Phys. C 45 074105Google Scholar

    [38]

    Zhang S S, Cao L G, Lombardo U, Schuck P 2016 Phys. Rev. C 93 044329Google Scholar

    [39]

    Zhang S S, Cao L G, Lombardo U, Zhao E G, Zhou S G 2010 Phys. Rev. C 81 044313Google Scholar

    [40]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [41]

    Giai N V, Sagawa H 1981 Phys. Lett. B 106 379Google Scholar

    [42]

    Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R 1998 Nucl. Phys. A 635 231Google Scholar

    [43]

    Bartel J, Quentin P, Brack M, Guet C, Håkansson H B 1982 Nucl. Phys. A 386 79Google Scholar

    [44]

    Colò G, Roca-Maza X 2021 arXiv: 2102.06562 [nucl-th]

    [45]

    Sun S, Zhang S S, Zhang Z H, Cao L G 2021 Chin. Phys. C 45 094101Google Scholar

    [46]

    Pritychenko B, Birch M, Singh B, Horoi M 2016 At. Data Nucl. Data Tables 107 1Google Scholar

    [47]

    Severyukhin A P, Voronov V V, Giai N V 2008 Phys. Rev. C 77 024322Google Scholar

  • 图 1  利用SGII, SLy5和SkM*相互作用计算的镍同位素链原子核的中子对能隙与实验值[40]的对比

    Fig. 1.  Neutron pairing gaps in Ni isotopes calculated by using SGII, SLy5, and SkM* interactions, and compared with the experimental values[40].

    图 2  (a)利用SGII, SLy5和SkM*相互作用计算的镍同位素链原子核的第一个2+态激发能与实验值的对比; (b)对应的电磁跃迁强度与实验值的对比. 实验数据取自文献[46]

    Fig. 2.  (a) Energies of the first 2+ state in Ni isotopes obtained by using SGII, SLy5, and SkM* interactions, and compared with the experimental data; (b) corresponding electromagnetic transition strengths. The experimental data is taken from Ref. [46].

    图 3  镍同位素链原子核的同位旋标量四极强度分布(计算采用了SGII相互作用) (a) $^{60—68}{\rm{Ni}}$; (b) $^{70—78}{\rm{Ni}}$

    Fig. 3.  Isoscalar quadrupole strength distributions in Ni isotopes: (a) $^{60-68}{\rm{Ni}}$; (b) $^{70-78}{\rm{Ni}}$. The SGII interaction is employed in the calculations.

    图 4  镍同位素链原子核低能区跃迁强度(计算采用了SGII相互作用)

    Fig. 4.  Transition strength for the low-energy region in Ni isotopes. The SGII interaction is employed in the calculations.

    图 5  组态$\nu 1\text{g}_{9/2} \to \nu 1\text{g}_{9/2}$和$\nu 1\text{g}_{9/2} \to \nu 2\text{d}_{5/2}$对$^{64—76}{\rm{Ni}}$矮四极共振态的(a)贡献百分比与(b)跃迁概率幅, 其中计算采用了SGII相互作用

    Fig. 5.  (a) Contribution percentage and (b) reduced transition amplitudes ${b}_{ cd}$ of configurations $\nu 1\text{g}_{9/2}\to \nu 1\text{g}_{9/2}$ and $\nu 1\text{g}_{9/2}\to \nu 2\text{d}_{5/2}$ contributed to the pygmy quadrupole states in $^{64-76}{\rm{Ni}}$. The SGII interaction is employed in the calculations.

    表 1  利用SGII相互作用计算的$^{64, 68, 72, 76}{\rm{Ni}}$费米面附近中子态的准粒子能$E_{{\mathrm{q.p}}.}$ (MeV)、占据概率$\upsilon^{2}$以及中子费米面$\lambda_n$ (MeV)

    Table 1.  Quasi-particle energies ($E_{{\mathrm{q.p}}.}$ in MeV), occupation probabilities ($\upsilon^{2}$) of neutron states around the Fermi level and neutron Fermi energies ($\lambda_n$ in MeV) in $^{64, 68, 72, 76}{\rm{Ni}}$, which are calculated by using SGII interaction.

    States $^{64}{\rm{Ni}}$ $^{68}{\rm{Ni}}$ $^{72}{\rm{Ni}}$ $^{76}{\rm{Ni}}$
    $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p.}}}$ $\upsilon^{2}$
    $1{\rm{f}}_{7/2}$ 7.43 0.98 8.89 0.99 10.47 0.99 11.47 1.00
    $2{\rm{p}}_{3/2}$ 2.51 0.86 3.60 0.96 5.17 0.98 6.20 0.99
    $1{\rm{f}}_{5/2}$ 1.95 0.55 2.66 0.89 4.34 0.95 5.48 0.98
    $2{\rm{p}}_{1/2}$ 1.70 0.47 2.04 0.86 3.53 0.95 4.57 0.99
    $1{\rm{g}}_{9/2}$ 4.30 0.05 2.59 0.12 1.84 0.44 1.68 0.80
    $2{\rm{d}}_{5/2}$ 8.45 0.00 6.65 0.01 4.91 0.01 3.61 0.01
    $\lambda_{n}$ –9.34 –7.98 –6.66 –5.84
    下载: 导出CSV

    表 2  对$^{64, 70, 76}{\rm{Ni}}$的第一个2+态以及矮四极共振态作出主要贡献的准粒子组态的组态能量${{E}}_{{\rm{conf}}.}$ (MeV)、贡献百分比以及对应的跃迁概率幅${{b}}_{{{cd}}}$ (fm2), 其中计算采用了SGII相互作用; π和ν分别代表质子态和中子态.

    Table 2.  Quasiparticle configurations giving the major contribution to the first 2+ and pygmy quadrupole states in Ni isotopes. For each transition, configuration energies (${{E}}_{{\rm{conf}}.}$ in MeV), their contribution to the norm of the state (in percentage) and the corresponding reduced transition amplitudes (${{b}}_{{{cd}}}$ in fm2) are given for $^{64}{\rm{Ni}}$, $^{70}{\rm{Ni}}$, and $^{76}{\rm{Ni}}$, respectively. The SGII interaction is employed in the calculations. Herein, the superscripts π and ν refer to the proton and neutron states, respectively.

    $^{64}{\rm{Ni}}$ $^{70}{\rm{Ni}}$ $^{76}{\rm{Ni}}$
    Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$ Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$ Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$
    第一个2+ 1.46 MeV 2.52 MeV 2.08 MeV
    $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 3.65 27.85 –7.45 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 68.71 17.43 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 3.37 71.34 –16.45
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 24.67 –9.02 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 15.53 7.55 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.30 11.88 –8.64
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 18.58 –10.52 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 4.39 3.00 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 8.92 –6.30
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 12.75 –5.10 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 2.40 1.49 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 2.21 –1.49
    $\nu 2{\rm{p}}_{3/2}-\nu 1{\rm{f}}_{5/2}$ 4.46 3.27 –1.27 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.42 0.84 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 0.70 –0.83
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{3/2}$ 5.03 2.35 –1.50 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 1.13 0.53
    矮四极共振态 5.16 MeV 4.98 MeV 4.11 MeV
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 61.35 –10.38 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 57.89 10.52 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.30 45.03 –13.35
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{3/2}$ 5.03 22.68 3.22 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 28.57 –8.98 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 3.37 26.99 7.85
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 6.20 1.97 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 3.85 1.23 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 20.62 –6.82
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 4.72 2.14 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 3.77 2.46 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 3.27 –1.29
    $\nu 2{\rm{p}}_{3/2}-\nu 1{\rm{f}}_{5/2}$ 4.46 2.78 0.70 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.75 1.18 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 0.64 –0.71
    $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 3.65 1.62 0.93 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 1.15 0.80
    矮四极共振态 6.89 MeV 6.46 MeV 6.31 MeV
    $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.59 90.06 –5.54 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 75.16 –5.15 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 51.09 –4.34
    $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 8.60 2.14 –1.48 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 12.00 1.83 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.29 30.23 9.29
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 2.06 1.49 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 4.39 2.44 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 16.37 –5.49
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 1.07 0.82 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 3.47 –2.21 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 1.04 –0.63
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 0.9 1.02 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.42 –0.88
    $\nu 1{\rm{f}}_{7/2}-\nu 1{\rm{f}}_{5/2}$ 9.37 0.9 –0.45 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 1.38 1.69
    下载: 导出CSV
  • [1]

    Paar N, Vretenar D, Khan E, Colò G 2007 Rep. Prog. Phys. 70 691Google Scholar

    [2]

    Garg U, Colò G 2015 Prog. Part. Nucl. Phys. 84 124Google Scholar

    [3]

    Horowitz C J, Pollock S J, Souder P A, Michaels R 2001 Phys. Rev. C 63 025501Google Scholar

    [4]

    Roca-Maza X, Cao L G, Colò G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [5]

    Chen L W, Ko C M, Li B A 2005 Phys. Rev. C 72 064309Google Scholar

    [6]

    Fang D Q 2023 Nucl. Tech. 46 080016Google Scholar

    [7]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [8]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [9]

    Ma C W, Liu Y P, Wei H L, Pu J, Cheng K X, Wang Y T 2022 Nucl. Sci. Tech. 33 6Google Scholar

    [10]

    Ren Z Z, Mittig W, Chen B Q, Ma Z Y 1995 Phys. Rev. C 52 R20(RGoogle Scholar

    [11]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [12]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [13]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [14]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [15]

    Piekarewicz J 2006 Phys. Rev. C 73 044325Google Scholar

    [16]

    Vretenar D, Paar N, Ring P, Lalazissis G A 2001 Phys. Rev. C 63 047301Google Scholar

    [17]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [18]

    Sun S, Yu R Q, Cao L G, Zhang C L, Zhang F S 2024 Eur. Phys. J. A 60 61Google Scholar

    [19]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [20]

    Pei J C, Kortelainen M, Zhang Y N, Xu F R 2014 Phys. Rev. C 90 051304Google Scholar

    [21]

    Khan E, Paar N, Vretenar D, Cao L G, Sagawa H, Colò G 2013 Phys. Rev. C 87 064311Google Scholar

    [22]

    Tao C, Ma Y G, Zhang G Q, Cao X G, Fang D Q, Wang H W 2013 Nucl. Sci. Tech. 24 030502Google Scholar

    [23]

    Zhang Z, Chen L W 2014 Phys. Rev. C 90 064317Google Scholar

    [24]

    Cao L G, Ma Z Y 2008 Chin. Phys. Lett. 25 1625Google Scholar

    [25]

    Cortés M L, Rodriguez W, Doornenbal P, et al. 2020 Phys. Lett. B 800 135071Google Scholar

    [26]

    Allmond J M, Brown B A, Stuchbery A E, et al. 2014 Phys. Rev. C 90 034309Google Scholar

    [27]

    Marchi T, de Angelis G, Valiente-Dobón J J, et al. 2014 Phys. Rev. Lett. 113 182501Google Scholar

    [28]

    Pellegri L, Bracco A, Tsoneva N, et al. 2015 Phys. Rev. C 92 014330Google Scholar

    [29]

    Spieker M, Tsoneva N, Derya V, et al. 2016 Phys. Lett. B 752 102Google Scholar

    [30]

    Yüksel E, Colò G, Khan E, Niu Y F 2018 Phys. Rev. C 97 064308Google Scholar

    [31]

    Tsoneva N, Lenske H 2011 Phys. Lett. B 695 174Google Scholar

    [32]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [33]

    Ansari A, Ring P 2006 Phys. Rev. C 74 054313Google Scholar

    [34]

    Colò G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [35]

    Liu L, Liu S, Zhang S S, Cao L G 2021 Chin. Phys. C 45 044105Google Scholar

    [36]

    Shang X L, Zuo W 2013 Phys. Rev. C 88 025806Google Scholar

    [37]

    Yan Y J, Shang X L, Dong J M, Zuo W 2021 Chin. Phys. C 45 074105Google Scholar

    [38]

    Zhang S S, Cao L G, Lombardo U, Schuck P 2016 Phys. Rev. C 93 044329Google Scholar

    [39]

    Zhang S S, Cao L G, Lombardo U, Zhao E G, Zhou S G 2010 Phys. Rev. C 81 044313Google Scholar

    [40]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [41]

    Giai N V, Sagawa H 1981 Phys. Lett. B 106 379Google Scholar

    [42]

    Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R 1998 Nucl. Phys. A 635 231Google Scholar

    [43]

    Bartel J, Quentin P, Brack M, Guet C, Håkansson H B 1982 Nucl. Phys. A 386 79Google Scholar

    [44]

    Colò G, Roca-Maza X 2021 arXiv: 2102.06562 [nucl-th]

    [45]

    Sun S, Zhang S S, Zhang Z H, Cao L G 2021 Chin. Phys. C 45 094101Google Scholar

    [46]

    Pritychenko B, Birch M, Singh B, Horoi M 2016 At. Data Nucl. Data Tables 107 1Google Scholar

    [47]

    Severyukhin A P, Voronov V V, Giai N V 2008 Phys. Rev. C 77 024322Google Scholar

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪. 类硼S离子K壳层激发共振态的辐射和俄歇跃迁. 物理学报, 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [4] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [5] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [6] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [7] 迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武. 石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究. 物理学报, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [8] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究. 物理学报, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [9] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [10] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [11] 葛桂贤, 罗有华. 密度泛函理论研究MgnOn(n=2—8)团簇的结构和电子性质. 物理学报, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [12] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [13] 任凤竹, 王渊旭, 田付阳, 赵文杰, 罗有华. 密度泛函理论研究ZrnCo(n=1—13)团簇的结构和磁性. 物理学报, 2008, 57(4): 2165-2173. doi: 10.7498/aps.57.2165
    [14] 雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨 致, 罗有华. 利用密度泛函理论研究BnNi(n≤5)小团簇的结构和磁性. 物理学报, 2007, 56(8): 4484-4490. doi: 10.7498/aps.56.4484
    [15] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究. 物理学报, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [16] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性. 物理学报, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [17] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] 陈中钧, 肖海燕, 祖小涛. MgS晶体结构性质的密度泛函研究. 物理学报, 2005, 54(11): 5301-5307. doi: 10.7498/aps.54.5301
    [19] 蔡建秋, 陶向明, 陈文斌, 赵新新, 谭明秋. Cu(100) (2×22)R45°-O的表面结构与电子态的密度泛函研究. 物理学报, 2005, 54(11): 5350-5355. doi: 10.7498/aps.54.5350
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  220
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-12-05
  • 上网日期:  2024-12-19

/

返回文章
返回