搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于定向声源的局域型声学斯格明子模式的选择性激发

张孝悦 徐华锋 陈婉娜 周农 吴宏伟

引用本文:
Citation:

基于定向声源的局域型声学斯格明子模式的选择性激发

张孝悦, 徐华锋, 陈婉娜, 周农, 吴宏伟

Selective excitation of localized acoustic skyrmion modes based on directional sound sources

Zhang Xiao-Yue, Xu Hua-Feng, Chen Wan-Na, Zhou Nong, Wu Hong-Wei
PDF
导出引用
  • 声学斯格明子模式是一种在声学结构表面产生的速度场矢量拓扑纹理结构,这种受保护的矢量分布为先进的声音信息处理、传输和数据存储提供了新的维度.在本文中,我们设计了一种波导和螺旋结构的组合结构,利用定向声源激发波导模式传输进而实现对局域型声学斯格明子模式的选择性激发.通过理论分析和数值仿真,我们研究了自旋声源,Huygens声源,Janus声源在此结构中激发的压力场分布以及速度场分布,展示了组合结构中声表面波的定向传输性质和选择性激发的声学斯格明子模式.这种波导激发方式是一种激发声学斯格明子模式的新手段,使得声学斯格明子模式的激发更加灵活.并且这种波导激发的方式在更复杂和更大规模的声学系统中有着重要的应用潜力,研究结果可能促进对声学近场物理的对称性理解,为利用声波操控粒子开辟新的路径,还可能为设计先进声学器件开辟新途径.
    Acoustic skyrmion modes are topological texture structures of velocity field vectors generated on the surface of acoustic structures. This protected vector distribution provides new dimensions for advanced sound information processing, transmission, and data storage. In this study, we design a combined structure of waveguides and spiral structures, using directional acoustic sources to excite waveguide mode transmission, thereby achieving selective excitation of localized acoustic skyrmion modes. Through theoretical analysis and numerical simulations, we studied the pressure field distribution and velocity field distribution excited by spin acoustic sources, Huygens acoustic sources, and Janus acoustic sources in this structure, demonstrating the directional transmission properties of acoustic surface waves and the selectively excited acoustic skyrmion modes in the combined structure. Numerical calculations reveal that when the spin acoustic source excites acoustic surface waves to propagate directionally along the waveguide, it selectively excites the acoustic skyrmion modes in the helical structure in the direction corresponding to the propagation. When the Huygens source excites acoustic surface waves to propagate directionally along the waveguide, it selectively excites acoustic skyrmion modes in the right or left direction. However, when the Janus source excites acoustic surface waves propagating directionally along the waveguide, it will selectively excite acoustic skyrmion modes in the upward or downward direction. This waveguide excitation method is a new means of exciting acoustic skyrmion modes, making the excitation of acoustic skyrmion modes more flexible. Moreover, this waveguide excitation method has significant application potential in more complex and larger-scale acoustic systems. The research results may promote the understanding of the symmetry in acoustic near-field physics, opening new pathways for using sound waves to manipulate particles, and potentially paving the way for the design of advanced acoustic devices.
  • [1]

    Skyrme T H R 1962Nucl. Phys 31 556

    [2]

    Adkins G S, Nappi C R, Witten E 1983Nucl. Phys 228 3

    [3]

    Khawaja U AI, Stoof H 2001Nature 411 918

    [4]

    Su S W, Liu I K, Tsai Y C, Liu W M, Gou S C 2012Phys. Rev. A 86 023601

    [5]

    Fukuda J I, Zumer S 2011Nat. Commun 2 246

    [6]

    Duzgun A, Selinger J, Saxena A 2018Phys. Rev. E 97 062706

    [7]

    Robler U K, Bogdanov A N, Pfleiderer C 2006Nature 4427104

    [8]

    Tokura Y, Kanazawa N 2021Chem. Rev 121 5

    [9]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009Science 323 5916

    [10]

    Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y 2018Nature 564 95

    [11]

    Chen C, Ma M Y, Pan F, Song C 2024Acta Phys. Sin 73 5(in Chinese) [陈崇, 马铭远, 潘峰, 宋成2024物理学报73 5]

    [12]

    Zhang X C, Xia J, Zhou Y, Wang D W, Liu X X, Zhao W S, Ezawa M 2016Phys. Rev. B 94 094420

    [13]

    Zhang S L, Kronast F, Van der Laan G, Hesjedal T 2018Nano Lett 18 2

    [14]

    Bhukta M M M, Mishra A, Pradhan G, Mallick S, Singh B B, Bedanta S 2018arXiv 1810:08262

    [15]

    Kezsmarki I, Bordacs S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015Nat. Mater 14 1116

    [16]

    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Robler U K, Felser C, Parkin S S P 2017Nature 548 561

    [17]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun 6 8462

    [18]

    Xia J, Zhang X C, Ezawa M, Tretiakov O A, Hou Z P, Wang W H, Zhao G P, Liu X X, Diep H T, Zhou Y 2020Appl. Phys. Let 117 012403

    [19]

    Nagaosa N, Tokura Y 2013Nat. Nanotechnol 8 899

    [20]

    Fert A, Reyren N, Cros V 2017Nat. Rev. Mater 2 17031

    [21]

    Du L P, Yang A P, Zayats A V, Yuan X C 2019Nat. Phys 15 650

    [22]

    Davis T J, Janoschka D, Dreher P, Frank B, Meyer zu Heringdorf F J, Giessen H 2020Science 368 6489

    [23]

    Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner N H, Bartal G 2018Science 361 6406

    [24]

    Bai C Y, Chen J, Zhang Y X, Zhang D W 2020 Opt Express 28 10320

    [25]

    Bliokh K Y, Rodriguez-Fortuno F J, Nori F, Zayats A V 2015Nat. Photonics 9 796

    [26]

    Shi P, Du L P, Yuan X C 2020Nanophotonics 9 4619

    [27]

    Karnieli A, Tsesses S, Bartal G, Arie A 2021Nat. Commun 12 1092

    [28]

    Deng Z L, Shi T, Krasnok A, Li X P, Alu A 2022Nat. Commun 13 1

    [29]

    Li X H, Liu L L, Zhou Z X, Shen J R, Zhang Y R, Han G D, Li Z 2022Adv. Opt. Mater 10 15

    [30]

    Shi C Z, Zhao R K, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019Natl. Sci. Rev 6 4

    [31]

    Burns L, Bliokh K Y, Nori F, Dressel J 2020New. J. Phys 22 053050

    [32]

    Long Y, Zhang D M, Yang C W, Ge J M, Chen H, Ren J 2020Nat. Commun 11 4716

    [33]

    Bliokh K Y, Nori F 2019Phys. Rev. B 99 020301

    [34]

    Bliokh K Y, Nori F2019Phys. Rev. B 99 174310

    [35]

    Weiner M, Ni X, Alu A, Khanikaev A B 2022Nat. Commun 13 6332

    [36]

    Long Y, Ge H, Zhang D M, Xu X Y, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020NSR 7 6

    [37]

    Sun Q L, Peng Y G, Gao F, Li B, Zhu X F 2023Phys. Rev. Appl 20 024025

    [38]

    Ge H, Xu X Y, Liu L, Xu R, Lin Z K, Yu S Y, Bao M, Jiang J H, Lu M H, Chen Y F 2021Phys. Rev. Lett 127 144502

    [39]

    Hu P, Wu H W, Sun W J, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023Appl. Phys. Lett 122 022201

    [40]

    Cselyuszka N, Secujski M, Engheta N, Crnojevic-Bengin V 2016New. J. Phys 18 103006

    [41]

    Zhu J, Chen Y Y, Zhu X F, Garcia-Vidal F J, Yin X B, Zhang W L, Zhang X 2013Sci. Rep 3 1728

    [42]

    Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys 116 124504

    [43]

    Ooi K, Okada T, Tanaka K 2011Phys. Rev. B 84 115405

    [44]

    Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett 122 222202

    [45]

    Morse P, Ingard K 1986Theoretical Acoustics (Princeton: Princeton University Press)

    [46]

    Zhang X Y, Xu H F, Chen W N, Zhou N, Sun W J, Wu H W 2024Acta Phys. Sin 73 14(in Chinese) [张孝悦,徐华锋,陈婉娜,周农,孙文军,吴宏伟2024物理学报73 14]

  • [1] 张孝悦, 徐华锋, 陈婉娜, 周农, 孙文军, 吴宏伟. 基于梯度结构波导实现的定向声学自旋角动量密度操控. 物理学报, doi: 10.7498/aps.73.20240484
    [2] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展. 物理学报, doi: 10.7498/aps.69.20200984
    [3] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, doi: 10.7498/aps.68.20190311
    [4] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, doi: 10.7498/aps.68.20190245
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, doi: 10.7498/aps.68.20181908
    [6] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, doi: 10.7498/aps.68.20191131
    [7] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, doi: 10.7498/aps.68.20191334
    [8] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, doi: 10.7498/aps.68.20190850
    [9] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, doi: 10.7498/aps.67.20180894
    [10] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, doi: 10.7498/aps.67.20180619
    [11] 张丰辉, 唐宇帆, 辛锋先, 卢天健. 微穿孔蜂窝-波纹复合声学超材料吸声行为. 物理学报, doi: 10.7498/aps.67.20181368
    [12] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, doi: 10.7498/aps.67.20180764
    [13] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, doi: 10.7498/aps.67.20180963
    [14] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, doi: 10.7498/aps.67.20180419
    [15] 郑圣洁, 夏百战, 刘亭亭, 于德介. 空间盘绕型声学超材料的亚波长拓扑谷自旋态. 物理学报, doi: 10.7498/aps.66.228101
    [16] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, doi: 10.7498/aps.66.024301
    [17] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨. 物理学报, doi: 10.7498/aps.64.154302
    [18] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, doi: 10.7498/aps.61.134303
    [19] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料. 物理学报, doi: 10.7498/aps.60.044301
    [20] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, doi: 10.7498/aps.58.6351
计量
  • 文章访问数:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回