搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大频率比的毫米波频率可重构滤波天线

杨国 施鸿强 黎小聪 肖如奇 齐世山 吴文

引用本文:
Citation:

大频率比的毫米波频率可重构滤波天线

杨国, 施鸿强, 黎小聪, 肖如奇, 齐世山, 吴文
cstr: 32037.14.aps.74.20241494

Millimeter-wave frequency-reconfigurable filtering antenna with high frequency turning ratio

YANG Guo, SHI Hongqiang, LI Xiaocong, XIAO Ruqi, QI Shishan, WU Wen
cstr: 32037.14.aps.74.20241494
PDF
HTML
导出引用
  • 针对现有毫米波频率可重构天线频率调谐比小的问题, 本文设计了一款宽频带双频毫米波频率可重构滤波天线. 天线以PIN二极管为重构开关, 选择阶梯阻抗谐振器作为可重构带通滤波器, 并加载U型枝节引入陷波; 通过微带线-带状线过渡馈电结构将滤波器与Vivaldi天线级联, 并设计了金属腔隔离辐射和滤波两部分, 有效降低了电磁干扰和交叉极化. 测试结果显示: PIN二极管处于导通状态时, 天线工作在25.9—28.6 GHz, 最大增益为8.83 dBi; PIN二极管处于断开状态时, 天线工作在32.6—35.9 GHz, 最大增益为9.97 dBi; 可重构中心频率比达到了1∶1.26, 两个频带的交叉极化电平均低于–20 dB.
    To solve the problem of small frequency turning ratio of the frequency-reconfigurable antenna operating in the millimeter-wave band, a millimeter-wave dual-band frequency-reconfigurable filtering antenna is proposed in this work. The proposed filtering antenna consists of a reconfigurable bandpass filter and an ultra-wideband double layer Vivaldi antenna. The reconfigurable bandpass filter is comprised of several components, including parallel coupled lines, stepped impedance resonator (SIR), PIN diodes, U-shaped branches, and bias network. The reconfigurable filter is integrated in the feedline of the Vivaldi antenna, which provides a simple structure and possesses flexibility for further expansion. The reconfigurable characteristic is realized by controlling the electrical length of the open circuit stepped impedance resonator through two PIN diodes, which not only acts as a switch but also affects the impedance matching within the millimeter wave band. Firstly, the equivalent circuit model of the SIR loaded with PIN diode and bias network is analyzed and simulated to achieve dual-band reconfigurability in the Ka-band. The bias network consists of fan-shaped branches and high-impedance microstrip lines, which suppresses the flow of RF signals. Two notches are introduced by the two U-shaped branches, which are arranged beside the parallel coupling line without affecting the performance of the reconfigurable filter. The realized two notches are located in the non-operating frequency band between the two reconfigurable bands, which enhances the out-of band performances of the reconfigurable filter. Then, to suppress the unnecessary coupling effect and concentrate the energy on the feedline of the Vivaldi antenna, some metallized vias are loaded on the two sides of the feedline. Finally, a metal cavity is introduced to isolate the radiation from filtering components, and some metal columns are loaded inside the cavity for improving the self-resonance of the metal cavity, which effectively improves the cross-polarization level of the filtering antenna. The measured results show that the proposed antenna operates in a range from 25.9 to 28.6 GHz with a maximum gain of 8.83 dBi when the PIN diodes are in the on state, and in a range from 32.6 to 35.9 GHz with a maximum gain of 9.97 dBi when the PIN diodes are in the off state. The center frequency ratio between two reconfigurable frequency bands reaches 1∶1.26, and the cross-polarization levels are all less than –20 dB in both operating bands.
      通信作者: 肖如奇, xiaoruqi_ee@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62271257)资助的课题.
      Corresponding author: XIAO Ruqi, xiaoruqi_ee@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271257).
    [1]

    Yang X J, Ge L, Ji Y, Zeng X R, Luk K M 2019 IEEE Trans. Antennas Propag. 67 6639Google Scholar

    [2]

    袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102Google Scholar

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102Google Scholar

    [3]

    Feng L Y, Leung K W 2016 IEEE Trans. Antennas Propag. 64 340Google Scholar

    [4]

    Xiang B J, Zheng S Y, Wong H, Pan Y M, Wang K X, Xia M H 2018 IEEE Trans. Antennas Propag. 66 657Google Scholar

    [5]

    Deng Q J, Pan Y M, Liu X Y, Leung K W 2023 IEEE Trans. Antennas Propag. 71 1971Google Scholar

    [6]

    Zou J J, Zhao Y, Yang X J, Ge L, Sun Y X 2023 IEEE Antennas Wirel. Propag. Lett. 22 1513Google Scholar

    [7]

    Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propag. 71 6628Google Scholar

    [8]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Antennas Wirel. Propag. Lett. 20 2095Google Scholar

    [9]

    Kumar Naik K, Sailaja B V S 2024 IEEE Open J. Antennas Propag. 5 673Google Scholar

    [10]

    Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2021 IEEE Trans. Antennas Propag. 69 4359Google Scholar

    [11]

    李靖豪, 杨琬琛, 周晨昱, 薛泉, 文岐业, 车文荃 2022 无线电工程 52 317Google Scholar

    Li J H, Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2022 Radio Engineering 52 317Google Scholar

    [12]

    Kim J, Oh J 2020 IEEE Antennas Wirel. Propag. Lett. 19 1958Google Scholar

    [13]

    Jilani S F, Rahimian A, Alfadhl Y, Alomainy A 2018 Flexible and Printed Electronics 3 1Google Scholar

    [14]

    Karthika K, Kavitha K, Darsani S, Preethi B, Pavithra P S 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) Coimbatore, India, March 25–26, 2022pp907Google Scholar

    [15]

    Choi J, Park J, Youn Y, Hwang W, Seong H, Whang Y N, Hong W 2020 Trans. Microw. Theory Tech. 68 1872Google Scholar

    [16]

    Sun W, Liu S X, Zhu X, Zhang X L, Chi P L, Yang T 2022 IEEE Trans. Antennas Propag. 70 156Google Scholar

    [17]

    Shi Y R, Ni X Y, Qian Z Y, He S J, Feng W J 2023 IEEE Antennas Wirel. Propag. Lett. 22 3097Google Scholar

    [18]

    Liu Q D, Dong Q, Wen J X, Ye L H, Wu D L, Zhang X Y 2023 IEEE Antennas Wirel. Propag. Lett. 22 2310Google Scholar

    [19]

    Kuosmanen M, Holopainen J, Ala-Laurinaho J, Kiuru T, Viikari V 2023 IEEE Trans. Antennas Propag. 71 6546Google Scholar

    [20]

    Guo C G, Zhang Z, Fu X N, Wang J H 2023 IEEE Antennas Wirel. Propag. Lett. 22 1793Google Scholar

    [21]

    Ma T C, Dang Q H, Fumeaux C, Nguyen-Trong N 2024 IEEE Trans. Antennas Propag. 72 2998Google Scholar

    [22]

    Tewari N, Dadel M, Srivastava S 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). Ahmedabad, India, December 11–14, 2023 p1Google Scholar

    [23]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Open J. Antennas Propag. 2 759Google Scholar

    [24]

    邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟 2023 电子与信息学报 45 3973Google Scholar

    Zou X J, Xu X G, Kang G Q, Zhu H, Tan M, Song W 2023 J Electron. Inf. Techn. 45 3973Google Scholar

    [25]

    Mandal M K, Sanyal S 2006 IEEE Microw. Wirel. Compon. Lett. 16 597Google Scholar

    [26]

    Lu J C, Liao C K, Chang C Y 2008 Trans. Microw. Theory Tech. 56 2101Google Scholar

    [27]

    Tu W H 2010 IEEE Microw. Wirel. Compon. Lett. 20 208Google Scholar

    [28]

    冯丽君 2022 硕士学位论文 (四川: 电子科技大学)

    Feng L J 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [29]

    March S L 1985 Trans. Microw. Theory Tech. 3 269Google Scholar

    [30]

    Xu J, Wu W, Kang W, Miao C 2012 IEEE Microw. Wirel. Compon. Lett. 22 351Google Scholar

    [31]

    Wan F Y, Wu L L, Ravelo B, Ge J X 2020 IEEE Trans. Electromagn Compat. 62 1813Google Scholar

    [32]

    Jiang W, Che W Q 2012 IEEE Antennas Wirel. Propag. Lett. 11 293Google Scholar

  • 图 1  可重构滤波器结构

    Fig. 1.  Reconfigurable filter structure.

    图 2  SIR结构加载直流偏置网络的等效电路模型 (a) PIN二极管导通; (b) PIN二极管断开

    Fig. 2.  Equivalent circuit model of SIR structure loaded DC bias networks: (a) PIN diodes are on state; (b) PIN diodes are off state.

    图 3  可重构滤波器S参数曲线图

    Fig. 3.  S-parameters curve of reconfigurable filter structure.

    图 4  毫米波频率可重构天线三维视图 (a)顶面; (b)侧面; (c)底面; (d)三维爆炸图

    Fig. 4.  Millimetre wave frequency reconfigurable antenna three dimensional (3D) view: (a) Top view; (b) side view; (c) bottom view; (d) 3D exploded view

    图 5  Vivaldi双面天线及其加载金属化过孔前后电场分布 (a)天线结构; (b)未加载金属化过孔; (c)加载金属化过孔

    Fig. 5.  Double-layer Vivaldi antenna and its electric field distribution before and after loaded the metallised via: (a) Antenna structure; (b) unloaded metallised via; (c) loaded metallised via.

    图 6  加载金属腔后天线的三维视图 (a)顶面; (b)侧面; (c)三维爆炸图

    Fig. 6.  3D view of antenna loaded metal cavity: (a) Top view; (b) side view; (c) 3D exploded view.

    图 7  加载金属腔和金属柱对天线反射系数的影响 (a) PIN二极管导通; (b) PIN二极管断开

    Fig. 7.  Effect of loaded metal cavity and metal column on antenna reflection coefficient: (a) PIN diodes are on state; (b) PIN diodes are off state.

    图 8  加载金属腔对天线辐射方向图的影响. PIN二极管导通, 27 GHz时(a) E面辐射方向图, (b) H面辐射方向图; PIN二极管断开, 35 GHz时(c) E面方向图, (d) H面方向图

    Fig. 8.  Effect of loaded metal cavity on antenna radiation pattern: (a) PIN diodes are on state, E-plane pattern at 27 GHz; (b) PIN diodes are on state, H-plane pattern at 27 GHz; (c) PIN diodes are off state, E-plane pattern at 35 GHz; (d) PIN diodes are off state, H-plane pattern at 35 GHz.

    图 9  制作的天线实物图 (a) Vivaldi天线和可重构滤波器; (b)加载金属腔的天线

    Fig. 9.  Photographs of the fabricated antenna: (a) Vivaldi antenna and the reconfigurable filter; (b) the antenna loaded metal cavity.

    图 10  频率可重构天线仿真与实测反射系数$ S_{11} $曲线 (a) PIN二极管导通; (b) PIN二极管断开

    Fig. 10.  Frequency reconfigurable antenna simulated and measured reflection coefficient $ S_{11} $ curves: (a) PIN diodes are on state; (b) PIN diodes are off state.

    图 11  频率可重构天线仿真与实测增益曲线 (a) PIN二极管导通; (b) PIN二极管断开

    Fig. 11.  Frequency reconfigurable antenna simulated and measured Gain curves: (a) PIN diodes are on state; (b) PIN diodes are off state.

    图 12  PIN二极管的寄生参数对天线反射系数$ S_{11} $的影响 (a)$ C_{\rm {p}} $的频率响应; (b)$ L_{\rm {so}} $的频率响应

    Fig. 12.  Effect of parasitic parameters of the PIN diode on the antenna reflection coefficient $ S_{11} $: (a) Frequency response of $ C_{\rm {p}} $; (b) frequency response of $ L_{\rm {so}} $

    图 13  频率可重构天线27 GHz仿真与实测辐射方向图 (a) E面方向图; (b) H面方向图

    Fig. 13.  Frequency reconfigurable antenna at 27 GHz simulated and measured radiation pattern: (a) E-plane pattern; (b) H-plane pattern.

    图 14  频率可重构天线35 GHz仿真与实测辐射方向图 (a) E面方向图; (b) H面方向图

    Fig. 14.  Frequency reconfigurable antenna at 35 GHz simulated and measured radiation pattern: (a) E-plane pattern; (b) H-plane pattern.

    表 1  可重构滤波器的结构参数(单位: mm)

    Table 1.  Structural parameters of the reconfigurable filter (unit: mm).

    $ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ w_5 $ $ l_1 $ $ l_2 $ $ l_3 $ $ l_4 $ $ l_5 $ $ l_6 $
    0.780.300.500.600.600.850.070.070.800.800.400.20
    $ n_1 $$ n_2 $$ n_3 $$ n_4 $$ s_0 $$ s_1 $$ w_{\rm i} $$ g_{\rm i} $$ g_{\rm p} $$ l_{\rm g} $$ r $
    1.600.201.500.500.100.050.100.100.100.350.10
    下载: 导出CSV

    表 2  Vivaldi天线结构参数(单位: mm)

    Table 2.  Structural parameters of the Vivaldi antenna (unit: mm).

    $ w_0 $ $ w_1 $ $ w_2 $ $ w_3 $ $ w_4 $ $ l_0 $ $ l_1 $ $ l_2 $ $ l_3 $ $ l_4 $ $ l_5 $ $ l_{\rm S} $ $ d $ $ r $ $ c $ $ h $
    22.00 14.60 0.34 0.24 0.12 33.00 15.00 1.50 1.70 2.15 1.20 3.00 2.00 1.70 0.30 0.254
    下载: 导出CSV

    表 3  与其他Ka波段频率可重构天线的比较

    Table 3.  Comparison with other frequency reconfigurable antennas in the Ka-band range.

    天线 天线类型 可重构频带/GHz 频率调谐比 可重构方式 开关数量 最大增益/dBi
    [12] 微带贴片 27.30—30.10 1∶1.10 液晶 N/A 6.5
    [15] 孔径缝隙 27.95/28.65 1∶1.02 PIN 1 6.4/6.1
    [23] 微带贴片 25.00/26.00 1∶1.16 PIN 2 13
    27.75/29.05
    本文 Vivaldi 27.25/34.25 1∶1.26 PIN 2 8.83/9.97
    下载: 导出CSV
  • [1]

    Yang X J, Ge L, Ji Y, Zeng X R, Luk K M 2019 IEEE Trans. Antennas Propag. 67 6639Google Scholar

    [2]

    袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102Google Scholar

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102Google Scholar

    [3]

    Feng L Y, Leung K W 2016 IEEE Trans. Antennas Propag. 64 340Google Scholar

    [4]

    Xiang B J, Zheng S Y, Wong H, Pan Y M, Wang K X, Xia M H 2018 IEEE Trans. Antennas Propag. 66 657Google Scholar

    [5]

    Deng Q J, Pan Y M, Liu X Y, Leung K W 2023 IEEE Trans. Antennas Propag. 71 1971Google Scholar

    [6]

    Zou J J, Zhao Y, Yang X J, Ge L, Sun Y X 2023 IEEE Antennas Wirel. Propag. Lett. 22 1513Google Scholar

    [7]

    Chen Q G, Ala-Laurinaho J, Khripkov A, Ilvonen J, Moreno R M, Viikari V 2023 IEEE Trans. Antennas Propag. 71 6628Google Scholar

    [8]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Antennas Wirel. Propag. Lett. 20 2095Google Scholar

    [9]

    Kumar Naik K, Sailaja B V S 2024 IEEE Open J. Antennas Propag. 5 673Google Scholar

    [10]

    Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2021 IEEE Trans. Antennas Propag. 69 4359Google Scholar

    [11]

    李靖豪, 杨琬琛, 周晨昱, 薛泉, 文岐业, 车文荃 2022 无线电工程 52 317Google Scholar

    Li J H, Yang W C, Zhou C Y, Xue Q, Wen Q Y, Che W Q 2022 Radio Engineering 52 317Google Scholar

    [12]

    Kim J, Oh J 2020 IEEE Antennas Wirel. Propag. Lett. 19 1958Google Scholar

    [13]

    Jilani S F, Rahimian A, Alfadhl Y, Alomainy A 2018 Flexible and Printed Electronics 3 1Google Scholar

    [14]

    Karthika K, Kavitha K, Darsani S, Preethi B, Pavithra P S 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) Coimbatore, India, March 25–26, 2022pp907Google Scholar

    [15]

    Choi J, Park J, Youn Y, Hwang W, Seong H, Whang Y N, Hong W 2020 Trans. Microw. Theory Tech. 68 1872Google Scholar

    [16]

    Sun W, Liu S X, Zhu X, Zhang X L, Chi P L, Yang T 2022 IEEE Trans. Antennas Propag. 70 156Google Scholar

    [17]

    Shi Y R, Ni X Y, Qian Z Y, He S J, Feng W J 2023 IEEE Antennas Wirel. Propag. Lett. 22 3097Google Scholar

    [18]

    Liu Q D, Dong Q, Wen J X, Ye L H, Wu D L, Zhang X Y 2023 IEEE Antennas Wirel. Propag. Lett. 22 2310Google Scholar

    [19]

    Kuosmanen M, Holopainen J, Ala-Laurinaho J, Kiuru T, Viikari V 2023 IEEE Trans. Antennas Propag. 71 6546Google Scholar

    [20]

    Guo C G, Zhang Z, Fu X N, Wang J H 2023 IEEE Antennas Wirel. Propag. Lett. 22 1793Google Scholar

    [21]

    Ma T C, Dang Q H, Fumeaux C, Nguyen-Trong N 2024 IEEE Trans. Antennas Propag. 72 2998Google Scholar

    [22]

    Tewari N, Dadel M, Srivastava S 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). Ahmedabad, India, December 11–14, 2023 p1Google Scholar

    [23]

    Patriotis M, Ayoub F N, Tawk Y, Costantine J, Christodoulou C G 2021 IEEE Open J. Antennas Propag. 2 759Google Scholar

    [24]

    邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟 2023 电子与信息学报 45 3973Google Scholar

    Zou X J, Xu X G, Kang G Q, Zhu H, Tan M, Song W 2023 J Electron. Inf. Techn. 45 3973Google Scholar

    [25]

    Mandal M K, Sanyal S 2006 IEEE Microw. Wirel. Compon. Lett. 16 597Google Scholar

    [26]

    Lu J C, Liao C K, Chang C Y 2008 Trans. Microw. Theory Tech. 56 2101Google Scholar

    [27]

    Tu W H 2010 IEEE Microw. Wirel. Compon. Lett. 20 208Google Scholar

    [28]

    冯丽君 2022 硕士学位论文 (四川: 电子科技大学)

    Feng L J 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [29]

    March S L 1985 Trans. Microw. Theory Tech. 3 269Google Scholar

    [30]

    Xu J, Wu W, Kang W, Miao C 2012 IEEE Microw. Wirel. Compon. Lett. 22 351Google Scholar

    [31]

    Wan F Y, Wu L L, Ravelo B, Ge J X 2020 IEEE Trans. Electromagn Compat. 62 1813Google Scholar

    [32]

    Jiang W, Che W Q 2012 IEEE Antennas Wirel. Propag. Lett. 11 293Google Scholar

  • [1] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪. 物理学报, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [2] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 物理学报, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [3] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善. 物理学报, 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [5] 王成, 赵俊明, 姜田, 冯一军. 基于场变换的毫米波半波片设计. 物理学报, 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [6] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [7] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [8] 牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿). 物理学报, 2017, 66(2): 024202. doi: 10.7498/aps.66.024202
    [9] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [10] 崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计. 物理学报, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [11] 莫秋燕, 赵彦立. 光通信用雪崩光电二极管(APD)频率响应特性研究. 物理学报, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [12] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [13] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [14] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [15] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [16] 董瑞芳, 张俊香, 张天才, 张靖, 谢常德, 彭堃墀. 通过λ/2波片外腔同位相弱反馈实现激光二极管激光的强度噪声压缩. 物理学报, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [17] 王均宏. 脉冲电磁波通过偶极天线辐射的物理过程及其数值模拟. 物理学报, 1999, 48(5): 850-861. doi: 10.7498/aps.48.850
    [18] 吴柏枚, 蒋克寒, 王东进, 盛奕键, 杜英磊. YBa2Cu3O7-δ超导厚膜在35GHz频率的毫米波表面电阻. 物理学报, 1995, 44(4): 646-652. doi: 10.7498/aps.44.646
    [19] 续競存, 卓济苍. 台式扩散参量二极管的串联电阻及截止频率. 物理学报, 1964, 20(4): 327-336. doi: 10.7498/aps.20.327
    [20] 续競存, 卓济苍. 双扩散参量二极管的串联电阻及截止频率. 物理学报, 1964, 20(6): 540-549. doi: 10.7498/aps.20.540
计量
  • 文章访问数:  323
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-25
  • 修回日期:  2024-11-15
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回