搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁砷化物超导体的自旋激发谱

李泽众 洪文山 谢涛 刘畅 罗会仟

引用本文:
Citation:

铁砷化物超导体的自旋激发谱

李泽众, 洪文山, 谢涛, 刘畅, 罗会仟
cstr: 32037.14.aps.74.20241534

Spin excitation spectra of iron pnictide superconductors

LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian
cstr: 32037.14.aps.74.20241534
PDF
HTML
导出引用
  • 铁基超导体的多结构体系和丰富的磁性物理为理解非常规超导微观机理提供了广阔的平台, 其中自旋涨落被认为是超导配对的最可能媒介. 本文以铁砷化物超导体为例, 系统总结了铁基超导体自旋激发谱的非弹性中子散射研究结果, 并探讨了相关的普适规律; 重点介绍了铁砷化物超导体中低能自旋激发与超导电性的直接联系, 即中子自旋共振模的行为, 以及高能自旋激发谱的色散关系、强度分布、总体磁矩等特征, 并充分比较了与铜氧化物高温超导体的异同.
    Spin fluctuations are often considered the most likely candidates for superconducting electron pairing media in unconventional superconductors. The iron-based superconductors provide a wide range of opportunities for studying the mechanism of unconventional superconductivity, as they have many systems with different structures and rich magnetisms. Taking the iron pnictide superconductors for example, this review summarizes the inelastic neutron scattering results of the spin excitation spectrum of iron-based superconductors, especially for their common features.Firstly, we introduce the direct connection between the low-energy spin excitations and superconductivity, which is so called the neutron spin resonance mode. This mode widely exists in the superconducting states of all iron-based superconductors, where the resonance energy ER is linearly proportional to the critical temperature Tc: ER = 4.9kBTc, and it has a universal c-axis preferred characteristic. The in-plane dispersion of spin resonance mode is not limited by the superconducting energy gap, which is in contrast to the traditional spin exciton model. The out-of plane dispersion of spin resonance mode is determined by the Fe-As interplanar distance, indicating that the three-dimensional spin correlation effect cannot be ignored, which may be the key to clarifying the role of spin fluctuations in superconductivity.Secondly, we summarize the energy dispersion, intensity distribution, and total fluctuating moment for high energy spin excitations. Although the Heisenberg model can roughly describe the similar dispersions in different systems based on the anisotropic in-plane nearest neighbor effective exchange couplings and the similar second nearest neighbor effective exchange coupling, the correlated Hubbard model based on itinerant magnetism can more accurately describe the spin wave behavior after degeneracy, thus the spin excitations are more likely to be understood from the perspective of itinerant magnetism. The spin excitation intensity varies greatly with energy in different systems, indicating a competitive relationship between itinerant and localized magnetic interactions. However, the total fluctuating moments are generally the same, indicating that the effective spin S = 1/2. The spin excitation bandwidth is in a range of 100–200 meV, probably is correlated with the height of As away from the Fe-Fe plane.Finally, we make a comprehensive comparison of the spin excitations in iron-based superconductors and copper oxide superconductors. The spin excitation spectra of iron-based superconductors have much richer physics than cuprates, due to the complex physics of multiple orbitals, Fermi surfaces, and energy gaps. These phenomena lead to the diversity of spin excitations, especially the prominent three-dimensional spin correlation effect. This indicates that interlayer pairing and intra layer pairing driven by spin interactions are equally important and must be fully considered in microscopic theories of high-Tc superconductivity.
      通信作者: 罗会仟, hqluo@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1406100, 2018YFA0704200)和中国科学院战略性先导科技专项(B类)(批准号: XDB25000000, XDB33000000, GJTD-2020-01)资助的课题.
      Corresponding author: LUO Huiqian, hqluo@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406100, 2018YFA0704200) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000, XDB33000000, GJTD-2020-01).
    [1]

    Stewart G R 2017 Adv. Phys. 66 75Google Scholar

    [2]

    Norman M R 2011 Science 332 196Google Scholar

    [3]

    Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Torma P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [4]

    Tran H, Vu T N 2023 Phys. Rev. Materials 7 054805Google Scholar

    [5]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [6]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets E I 2019 Nature 569 528Google Scholar

    [7]

    Zhong X, Tse J S, Hemley R J, Liu H 2022 The Innovation 3 100226

    [8]

    单鹏飞, 王宁宁, 孙建平, 程金光 2021 物理 50 217Google Scholar

    Shan P F, Wang N N, Sun J P, Cheng J G 2021 Physics 50 217Google Scholar

    [9]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [10]

    Li Z W, He X, Zhang C L, Lu K, Min B, Zhang J, Zhang S J, Zhao J F, Shi L C, Peng Y, Feng S M, Deng Z, Song J, Liu Q Q, Wang X C, Yu R C, Wang L H, Li Y Z, Bass J D, Prakapenka V, Chariton S, Liu H Z, Jin C Q 2023 Sci. China Phys. Mech. Astron. 66 267411Google Scholar

    [11]

    Zhang K, Chen W, Zhang Y, Guo J, Chen S, Huang X, Cui T 2024 Sci. China Phys. Mech. Astron. 67 238211Google Scholar

    [12]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [13]

    Stockert O, Steglich F 2011 Annu. Rev. Condens. Matter Phys. 2 79Google Scholar

    [14]

    杨义峰 2014 物理 43 80Google Scholar

    Yang Y F 2014 Physics 43 80Google Scholar

    [15]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [16]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [17]

    Chen X H, Dai P C, Feng D L, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371Google Scholar

    [18]

    Si Q M, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017Google Scholar

    [19]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508Google Scholar

    [20]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar

    [21]

    Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X, Chenget J G 2022 Phys. Rev. Lett. 128 187001Google Scholar

    [22]

    Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S, Cheng J G 2022 Chin. Phys. Lett. 39 067401Google Scholar

    [23]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [24]

    Gu Q Q, Wen H H 2022 The Innovation 3 100202

    [25]

    Ding X, Shen S C, Leng H Q, Xu M H, Zhao Y, Zhao J R, Sui X L, Wu X Q, Xiao H Y, Zu X T, Huang B, Luo H Q, Yu P, Qiao L 2022 Sci. China Phys. Mech. Astron. 65 267411Google Scholar

    [26]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [27]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [28]

    罗会仟 2024 现代物理知识 36 46

    Luo H Q 2024 Mod. Phys. 36 46

    [29]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [30]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [31]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [32]

    Wu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [33]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [34]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [35]

    龚冬良, 罗会仟 2018 物理学报 67 207407Google Scholar

    Gong D L, Luo H Q 2018 Acta Phys. Sin. 67 207407Google Scholar

    [36]

    Luo H Q 2017 Chin. Sci. Bull. 62 3955Google Scholar

    [37]

    Gong D L, Yi M, Wang M, Xie T, Zhang W L, Danilkin S, Deng G C, Liu X Z, Park J T, Ikeuchi K, Kamazawa K, Mo S K, Hashimoto M, Lu D H, Zhang R, Dai P C, Birgeneau R J, Li S L, Luo H Q 2022 Front. Phys. 10 886459Google Scholar

    [38]

    Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709Google Scholar

    [39]

    Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W, Dai P C 2012 Phys. Rev. Lett. 108 247002Google Scholar

    [40]

    Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M, Dai P C 2013 Phys. Rev. Lett. 110 257001Google Scholar

    [41]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S Y, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [42]

    Meier W R, Kong T, Bud’ko S L, Canfield P C 2017 Phys. Rev. Materials 1 013401Google Scholar

    [43]

    Kreyssig A, Wilde J M, Böhmer A E, Tian W, Meier W R, Li B, Ueland B G, Xu M Y, Bud’ko S L, Canfield P C, McQueeney R J, Goldman A I 2018 Phys. Rev. B 97 224521Google Scholar

    [44]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [45]

    Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Xu X G, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S, Mu G 2019 J. Phys. Chem. C 123 13925Google Scholar

    [46]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A, Cao G H 2017 J. Phys.: Condens. Matter 29 11LT01Google Scholar

    [47]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Cao G H 2017 Chem. Mater. 29 1805Google Scholar

    [48]

    Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y, Cao G H 2017 Phys. Rev. Materials 1 044804Google Scholar

    [49]

    Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A, Cao G H 2012 J. Am. Chem. Soc. 134 12893Google Scholar

    [50]

    Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu F Y, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S L, Liu H Y, Duan Y X, Luo H Q, Meng J Q 2022 Sci. China Phys. Mech. Astron. 65 237411Google Scholar

    [51]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [52]

    de la Cruz C, Huang Q, Lynn J W, Li J Y, Ratcliff W II, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899Google Scholar

    [53]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [54]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003Google Scholar

    [55]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [56]

    Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y, Wen H H 2008 Supercond. Sci. Technol. 21 125014Google Scholar

    [57]

    Chen Y C, Lu X Y, Wang M, Luo H Q, Li S L 2011 Supercond. Sci. Technol. 24 065004Google Scholar

    [58]

    Katayama N, Kudo K, Onari S, Mizukami T, Sugawara K, Sugiyama Y, Kitahama Y, Iba K, Fujimura K, Nishimoto N, Nohara M, Sawa H 2013 J. Phys. Soc. Jpn. 82 123702Google Scholar

    [59]

    Xie T, Gong D L, Zhang W L, Gu Y H, Huesges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L, Luo H Q 2017 Supercond. Sci. Technol. 30 095002Google Scholar

    [60]

    Ni N, Straszheim W E, Williams D J, Tanatar M A, Prozorov R, Bauer E D, Ronning F, Thompson J D, Cava R J 2013 Phys. Rev. B 87 060507Google Scholar

    [61]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522Google Scholar

    [62]

    Jiang S, Liu L, Schütt M, Hallas A M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke G M, Uemura Y J, Fernandes R M, Ni N 2016 Phys. Rev. B 93 174513Google Scholar

    [63]

    Sun Y, Ablimit A, Bao J, Jiang H, Zhou J, Cao G H 2013 Sci. Technol. Adv. Mater. 14 055008Google Scholar

    [64]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl Acad. Sci. USA 108 E1019Google Scholar

    [65]

    Sapkota A, Tucker G S, Ramazanoglu M, Tian W, Ni N, Cava R J, McQueeney R J, Goldman A I, Kreyssig A 2014 Phys. Rev. B 90 100504(RGoogle Scholar

    [66]

    Wu Q Y, Zhang C, Li Z Z, Hong W S, Liu H, Song J J, Zhao Y Z, Yuan Y H, Meng J Q 2023 Phys. Rev. B 108 205136Google Scholar

    [67]

    Sato M, Kawamata T, Kobayashi Y, Yasui Y, Iida T, Suzuki K, Itoh M, Moyoshi T, Motoya K, Kajimoto R, Nakamura M, Inamura Y, Arai M 2011 J. Phys. Soc. Jpn. 80 093709Google Scholar

    [68]

    Ikeuchi K, Kobayashi Y, Suzuki K, Itoh M, Kajimoto R, Bourges P, Christianson A D, Nakamura H, Machida M, Sato M 2014 JPS Conf. Proc. 3 015043Google Scholar

    [69]

    Fernandes R M, Kivelson S A, Berg E 2016 Phys. Rev. B 93 014511Google Scholar

    [70]

    Allred J M, Taddei K M, Bugaris D E, Krogstad M J, Lapidus S H, Chung D Y, Claus H, Kanatzidis M G, Brown D E, Kang J, Fernandes R M, Eremin I, Rosenkranz S, Chmaissem O, Osborn R 2016 Nat. Phys. 12 493Google Scholar

    [71]

    Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P, Meingast C 2015 Nat. Commun. 6 7911Google Scholar

    [72]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M, Claus H, Chung D Y, Kanatzidis M, Osborn R, Rosenkranz S, Chmaissem O 2017 Phys. Rev. B 95 064508Google Scholar

    [73]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M J, Stadel R, Claus H, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Chmaissem O 2016 Phys. Rev. B 93 134510Google Scholar

    [74]

    Meier W R, Ding Q P, Kreyssig A, Bud’ko S L, Sapkota A, Kothapalli K, Borisov V, Valentí R, Batista C D, Orth P P, Fernandes R M, Goldman A I, Furukawa Y, Böhmer A E, Canfield P C 2018 npj Quantum Mater. 3 5Google Scholar

    [75]

    Xie T, Wei Y, Gong D L, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S L, Hu J P, Luo H Q 2008 Phys. Rev. Lett. 120 267003Google Scholar

    [76]

    Xie T, Liu C, Bourdarot F, Regnault L P, Li S L, Luo H Q 2020 Phys. Rev. Research 2 022018(RGoogle Scholar

    [77]

    Liu C, Bourges P, Sidis Y, Xie T, He G H, Bourdarot F, Danilkin S, Ghosh H, Ghosh S, Ma X Y, Li S L, Li Y, Luo H Q 2022 Phys. Rev. Lett. 128 137003Google Scholar

    [78]

    Hong W S, Song L X, Liu B, Li Z Z, Zeng Z Y, Li Y, Wu D S, Sui Q T, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J P, Zhao L, Zhou X J, Qiu X G, Li S L, Luo H Q 2020 Phys. Rev. Lett. 125 117002Google Scholar

    [79]

    Lu X Y, Scherer D D, Tam D W, Zhang W L, Zhang R, Luo H Q, Harriger L W, Walker H C, Adroja D T, Andersen B M, Dai P C 2018 Phys. Rev. Lett. 121 067002Google Scholar

    [80]

    Canfield P C, Bud’ko S L 2010 Annu. Rev. Condens. Matter Phys. 1 27Google Scholar

    [81]

    Zhou H L, Zhang Y H, Li Y, Li S L, Hong W S, Luo H Q 2022 Chin. Phys. B 31 117401Google Scholar

    [82]

    Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P, Meingast C 2016 Phys. Rev. B 93 014514Google Scholar

    [83]

    Goko T, Aczel A A, Baggio-Saitovitch E, Bud’ko S L, Canfield P C, Carlo J P, Chen G F, Dai P C, Hamann A C, Hu W Z, Kageyama H, Luke G M, Luo J L, Nachumi B, Ni N, Reznik D, Sanchez-Candela D R, Savici A T, Sikes K J, Wang N L, Wiebe C R, Williams T J, Yamamoto T, Yu W, Uemura Y J 2009 Phys. Rev. B 80 024508Google Scholar

    [84]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W 2009 New J. Phys. 11 025008Google Scholar

    [85]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud’ko S L, Canfield P C, Hannahs S T 2010 Phys. Rev. B 82 024519Google Scholar

    [86]

    Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A, Cao G H 2009 J. Phys.: Condens. Matter 21 382203Google Scholar

    [87]

    Hu D, Lu X Y, Zhang W L, Luo H Q, Li S L, Wang P P, Chen G F, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P, Yu W Q, Dai P C 2015 Phys. Rev. Lett. 114 157002Google Scholar

    [88]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [89]

    Zhang C L, Wang M, Luo H Q, Wang M Y, Liu M S, Zhao J, Abernathy D L, Maier T A, Marty K, Lumsden M D, Chi S X, Chang S, Rodriguez-Rivera J A, Lynn J W, Xiang T, Hu J P, Dai P C 2011 Sci. Rep. 1 115Google Scholar

    [90]

    Wang M, Zhang C L, Lu X Y, Tan G T, Luo H Q, Song Y, Wang M Y, Zhang X T, Goremychkin E A, Perring T G, Maier T A, Yin Z P, Haule K, Kotliar G, Dai P C 2013 Nat. Commun. 4 2874Google Scholar

    [91]

    Luo H Q, Lu X Y, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G C, Yamani Z, Dai P C 2013 Phys. Rev. B 88 144516Google Scholar

    [92]

    Lipscombe O J, Harriger L W, Freeman P G, Enderle M, Zhang C L, Wang M Y, Egami T, Hu J P, Xiang T, Norman M R, Dai P C 2010 Phys. Rev. B 82 064515Google Scholar

    [93]

    Steffens P, Lee C H, Qureshi N, Kihou K, Iyo A, Eisaki H, Braden M 2013 Phys. Rev. Lett. 110 137001Google Scholar

    [94]

    Luo H Q, Wang M, Zhang C L, Lu X Y, Regnault L P, Zhang R, Li S L, Hu J P, Dai P C 2013 Phys. Rev. Lett. 111 107006Google Scholar

    [95]

    Zhang C L, Song Y, Regnault L P, Su Y X, Enderle M, Kulda J, Tan G T, Sims Z C, Egami T, Si Q M, Dai P C 2014 Phys. Rev. B 90 140502(RGoogle Scholar

    [96]

    Song Y, Wang W Y, Zhang C L, Gu Y H, Lu X Y, Tan G T, Su Y X, Bourdarot F, Christianson A D, Li S L, Dai P C 2017 Phys. Rev. B 96 184512Google Scholar

    [97]

    Song Y, Man H R, Zhang R, Lu X Y, Zhang C L, Wang M, Tan G T, Regnault L P, Su Y X, Kang J, Fernandes R M, Dai P C 2016 Phys. Rev. B 94 214516Google Scholar

    [98]

    Waßer F, Park J T, Aswartham S, Wurmehl S, Sidis Y, Steffens P, Schmalzl K, Büchner B, Braden M 2019 npj Quantum Mater. 4 59Google Scholar

    [99]

    Rossat-Mignod J, Regnault L P, Vettier C, Bourges P, Burlet P, Bossy J, Henry J Y, Lapertot G 1991 Phys. C: Supercond. 185 86

    [100]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383Google Scholar

    [101]

    Sidis Y, Pailhès S, Hinkov V, Fauqué B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745Google Scholar

    [102]

    Yu G, Li Y, Motoyama E M, Greven M 2009 Nat. Phys. 5 873Google Scholar

    [103]

    Xie T, Gong D L, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S L, Luo H Q 2008 Phys. Rev. Lett. 120 137001Google Scholar

    [104]

    Adroja D T, Blundell S J, Lang F, Luo H Q, Wang Z C, Cao G H 2020 J.Phys.: Condens. Matter 32 435603Google Scholar

    [105]

    Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B, Hinkov V 2010 Nat. Phys. 6 178Google Scholar

    [106]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokes K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718Google Scholar

    [107]

    Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J, Birgeneau R J 2013 Phys. Rev. Lett. 110 147003Google Scholar

    [108]

    Zhang C L, Li H F, Song Y, Su Y X, Tan G T, Netherton T, Redding C, Carr S V, Sobolev O, Schneidewind A, Faulhaber E, Harriger L W, Li S L, Lu X Y, Yao D X, Das T, Balatsky A V, Brückel T, Lynn J W, Dai P C 2013 Phys. Rev. B 88 064504Google Scholar

    [109]

    Wang Q, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, Zhao J 2016 Nat. Mater. 15 159Google Scholar

    [110]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504(RGoogle Scholar

    [111]

    Wang M, Luo H Q, Zhao J, Zhang C L, Wang M, Marty K, Chi S X, Lynn J W, Schneidewind A, Li S L, Dai P C 2010 Phys. Rev. B 81 174524Google Scholar

    [112]

    Park J T, Inosov D S, Yaresko A, Graser S, Sun D L, Bourges Ph, Sidis Y, Li Y, Kim J H, Haug D, Ivanov A, Hradil K, Schneidewind A, Link P, Faulhaber E, Glavatskyy I, Lin C T, Keimer B, Hinkov V 2010 Phys. Rev. B 82 134503Google Scholar

    [113]

    Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930Google Scholar

    [114]

    Qiu Y M, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M H, Mao Z Q 2009 Phys. Rev. Lett. 103 067008Google Scholar

    [115]

    Shen S D, Zhang X W, Wo H L, Shen Y, Feng Y, Schneidewind A, Čermák P, Wang W B, Zhao J 2020 Phys. Rev. Lett. 124 017001Google Scholar

    [116]

    Ma M W, Bourges P, Sidis Y, Ivanov A, Chen G F, Ren Z A, Li Y 2023 Phys. Rev. B 107 184516Google Scholar

    [117]

    Harriger L W, Lipscombe O J, Zhang C L, Luo H Q, Wang M, Marty K, Lumsden M D, Dai P C 2012 Phys. Rev. B 85 054511Google Scholar

    [118]

    Guo J Q, Yue L, Iida K, Kamazawa K, Chen L, Han T T, Zhang Y, Li Y 2019 Phys. Rev. Lett. 122 017001Google Scholar

    [119]

    Chubukov A V, Efremov D V, Eremin I 2008 Phys. Rev. B 78 134512Google Scholar

    [120]

    Maier T A, Scalapino D J 2008 Phys. Rev. B 78 020514(RGoogle Scholar

    [121]

    Maier T A, Graser S, Scalapino D J, Hirschfeld P 2009 Phys. Rev. B 79 134520Google Scholar

    [122]

    Das T, Balatsky A V 2011 Phys. Rev. Lett. 106 157004Google Scholar

    [123]

    Mazin I I, Schmalian J 2009 Physica C 469 614Google Scholar

    [124]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512Google Scholar

    [125]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404Google Scholar

    [126]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508Google Scholar

    [127]

    Wang F, Lee D H 2011 Science 332 200Google Scholar

    [128]

    Parish M M, Hu J, Bernevig B A 2008 Phys. Rev. B 78 144514Google Scholar

    [129]

    Onari S, Kontani H, Sato M 2010 Phys. Rev. B 81 060504(RGoogle Scholar

    [130]

    Onari S, Kontani H 2012 Phys. Rev. Lett. 109 137001Google Scholar

    [131]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001Google Scholar

    [132]

    Takeuchi L, Yamakawa Y, Kontani H 2018 Phys. Rev. B 98 165143Google Scholar

    [133]

    Kontani H, Tazai R, Yamakawa Y, Onari S 2021 Adv. Phys. 70 355Google Scholar

    [134]

    Kim M G, Tucker G S, Pratt D K 2013 Phys. Rev. Lett. 110 177002Google Scholar

    [135]

    Zhang R, Wang W Y, Maier T A, Wang M, Stone M B, Chi S, Winn B, Dai P C 2018 Phys. Rev. B 98 060502(RGoogle Scholar

    [136]

    Hu D, Yin Z P, Zhang W L, Ewings R A, Ikeuchi K, Nakamura M, Roessli B, Wei Y, Zhao L X, Chen G F, Li S L, Luo H Q, Haule K 2016 Phys. Rev. B 94 094504Google Scholar

    [137]

    Xie T, Liu C, Fennell T, Stuhr U, Li S L, Luo H Q 2020 Chin. Phys. B 30 127402Google Scholar

    [138]

    Zhang C L, Yu R, Su Y X, Song Y, Wang M Y, Tan G T, Egami T, Fernandez-Baca JA, Faulhaber E, Si Q M, Dai P C 2013 Phys. Rev. Lett. 111 207002Google Scholar

    [139]

    Wang M, Yi M, Sun H L, Valdivia P, Kim M G, Xu Z J, Berlijn T, Christianson A D, Chi S X, Hashimoto M, Lu D H, Li X D, Bourret-Courchesne E, Dai P C 2016 Phys. Rev. B 93 205149Google Scholar

    [140]

    Hong W S, Zhou H L, Li Z Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X Y, Hu J P, Li S L, Luo H Q 2023 Phys. Rev. B 107 224514Google Scholar

    [141]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041Google Scholar

    [142]

    Xie T, Liu C, Kajimoto R, Ikeuchi K, Li S L, Luo H Q 2022 J. Phys.: Condens. Matter 34 474001Google Scholar

    [143]

    Luo H Q, Yamani Z, Chen Y C, Lu X Y, Wang M, Li S L, Maier T A, Danilkin S, Adroja D T, Dai P C 2012 Phys. Rev. B 86 024508Google Scholar

    [144]

    Zhang C, Harriger L W, Yin Z P, Lü W C, Wang M, Tan G T, Song Y, Abernathy D L, Tian W, Egami T, Haule K, Kotliar G, Dai P C 2014 Phys. Rev. Lett. 112 217202Google Scholar

    [145]

    Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Dai P C 2009 Nat. Phys. 5 555Google Scholar

    [146]

    Zhao J, Ratcliff W, Lynn J W, Chen G F, Luo J L, Wang N L, Hu J P, Dai P C 2008 Phys. Rev. B 78 140504(RGoogle Scholar

    [147]

    Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, Dai P C 2011 Phys. Rev. B 84 054544Google Scholar

    [148]

    Harriger L W, Liu M S, Luo H Q, Ewings R A, Frost C D, Perring T G, Dai P C 2012 Phys. Rev. B 86 140403(RGoogle Scholar

    [149]

    Liu M S, Harriger L W, Luo H Q, Wang M, Ewings R A, Guidi T, Park H W, Haule K, Kotliar G, Hayden S M, Dai P C 2012 Nat. Phys. 8 376Google Scholar

    [150]

    Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A N, Si Q M, Dai P C 2014 Science 345 657Google Scholar

    [151]

    Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M, Dai P C 2015 Phys. Rev. B 92 180504(RGoogle Scholar

    [152]

    Zhang C L Park J T, Lu X Y, Yu R, Li Y, Zhang W L, Zhao Y, Lynn J W, Si Q M, Dai P C 2015 Phys. Rev. B 91 104520Google Scholar

    [153]

    Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q, Li S L 2016 Phys. Rev. Lett. 117 227003Google Scholar

    [154]

    Tam D W, Yin Z P, Xie Y F, Wang W Y, Stone M B, Adroja D T, Walker H C, Yi M, Dai P C 2020 Phys. Rev. B 102 054430Google Scholar

    [155]

    Tam D W, Wang W Y, Zhang L, Song Y, Zhang R, Carr S V, Walker H C, Perring T G, Adroja D T, Dai P C 2019 Phys. Rev. B 99 134519Google Scholar

    [156]

    Tranquada J M, Xu G, Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148Google Scholar

    [157]

    Fujita M, Hiraka H, Matsuda M, Matsuura M, Tranquada J M, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Jpn. 81 011007Google Scholar

    [158]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 The Innovation 4 100459

    [159]

    Zeng Z Y, Zhou C K, Zhou H L, Han L K, Chi R Z, Li K, Kofu M, Nakajima K, Wei Y, Zhang W L, Mazzone D G, Meng Z Y, Li S L 2024 Nat. Phys. 20 1097Google Scholar

    [160]

    Sheng J M, Wang L, Jiang W R, Ge H, Zhao N, Li T T, Kofu M, Yu D H, Zhu W, Mei J W, Wang Z T, Wu L S 2024 arXiv: 2402.07730 [cond-mat.str-el]

    [161]

    Wu D S, Jia J J, Yang J G, Hong W S, Shu Y J, Miao T M, Yan H T, Rong H T, Ai P, Zhang X, Yin C H, Li C L, Zhang S J, Zhang F F, Yang F, Wang Z M, Zong N, Liu L J, Li R K, Wang X Y, Peng Q J, Mao H Q, Liu G D, Li S L, Luo H Q, Wu X X, Xu Z Y, Zhao L, Zhou X J 2024 Nat. Phys. 20 571Google Scholar

    [162]

    Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001Google Scholar

    [163]

    Hayden S M, Aeppli G, Mook H A, Perring T G, Mason T E, Cheong S W, Fisk Z 1996 Phys. Rev. Lett. 76 1344Google Scholar

  • 图 1  (a) Fe离子构成的磁晶胞及交换耦合能; (b)简明电子态相图; (c)电子型掺杂体系的低能自旋激发的动量分布; (d)空穴型掺杂体系的低能自旋激发的动量分布, 其中虚线为第一布里渊区

    Fig. 1.  (a) Magnetic unit cell and exchange couplings; (b) illustration of phase diagram; (c) low-energy spin excitations in electron-doped compounds, (d) low-energy spin excitations in hole-doped compounds, the dashed box is the first Brillouin zone.

    图 2  铁基超导体中自旋共振能量ER与临界温度Tc的线性标度关系[78]

    Fig. 2.  Linear scaling relationship between the resonance energy ER and critical temperature Tc in iron-based superconductors[78].

    图 3  铜基和铁基超导体中自旋共振模面内色散与超导能隙的关系[78]

    Fig. 3.  Relationship between the energy dispersion of the spin resonance mode and the superconducting gap in cuprates and iron-based superconductors[78].

    图 4  CaK(Fe1–xNix)4As4中自旋涡旋涨落与c方向择优的自旋共振模[77]

    Fig. 4.  Spin-vortex fluctuations and c-axis preferred spin resonance mode in CaK(Fe1–xNix)4As4[77].

    图 5  铁基超导体中自旋共振三维色散与Fe-As面间距d的标度关系[140]

    Fig. 5.  Scaling relationship between the 3D energy dispersion of the spin resonance mode and the Fe-As interlayer distance d [140].

    图 6  Ca0.82La0.18Fe0.96Ni0.04As2中不同能量窗口的自旋激发谱图[142]

    Fig. 6.  Energy slice of the spin excitations in Ca0.82La0.18Fe0.96Ni0.04As2 at different energy windows[142].

    图 7  (a)自旋激发谱色散关系; (b)自旋激发强度的能量分布

    Fig. 7.  (a) Dispersion of spin excitations; (b) energy dependence of spin excitations.

    图 8  (a)自旋激发谱积分强度; (b)自旋激发谱的带宽对比

    Fig. 8.  (a) Total fluctuations strength of spin excitations; (b) band width of spin excitation in different compounds.

  • [1]

    Stewart G R 2017 Adv. Phys. 66 75Google Scholar

    [2]

    Norman M R 2011 Science 332 196Google Scholar

    [3]

    Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Torma P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [4]

    Tran H, Vu T N 2023 Phys. Rev. Materials 7 054805Google Scholar

    [5]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [6]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets E I 2019 Nature 569 528Google Scholar

    [7]

    Zhong X, Tse J S, Hemley R J, Liu H 2022 The Innovation 3 100226

    [8]

    单鹏飞, 王宁宁, 孙建平, 程金光 2021 物理 50 217Google Scholar

    Shan P F, Wang N N, Sun J P, Cheng J G 2021 Physics 50 217Google Scholar

    [9]

    孙莹, 刘寒雨, 马琰铭 2021 物理学报 70 017407Google Scholar

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407Google Scholar

    [10]

    Li Z W, He X, Zhang C L, Lu K, Min B, Zhang J, Zhang S J, Zhao J F, Shi L C, Peng Y, Feng S M, Deng Z, Song J, Liu Q Q, Wang X C, Yu R C, Wang L H, Li Y Z, Bass J D, Prakapenka V, Chariton S, Liu H Z, Jin C Q 2023 Sci. China Phys. Mech. Astron. 66 267411Google Scholar

    [11]

    Zhang K, Chen W, Zhang Y, Guo J, Chen S, Huang X, Cui T 2024 Sci. China Phys. Mech. Astron. 67 238211Google Scholar

    [12]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [13]

    Stockert O, Steglich F 2011 Annu. Rev. Condens. Matter Phys. 2 79Google Scholar

    [14]

    杨义峰 2014 物理 43 80Google Scholar

    Yang Y F 2014 Physics 43 80Google Scholar

    [15]

    White B D, Thompson J D, Maple M B 2015 Physica C 514 246Google Scholar

    [16]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [17]

    Chen X H, Dai P C, Feng D L, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371Google Scholar

    [18]

    Si Q M, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017Google Scholar

    [19]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508Google Scholar

    [20]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001Google Scholar

    [21]

    Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X, Chenget J G 2022 Phys. Rev. Lett. 128 187001Google Scholar

    [22]

    Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S, Cheng J G 2022 Chin. Phys. Lett. 39 067401Google Scholar

    [23]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [24]

    Gu Q Q, Wen H H 2022 The Innovation 3 100202

    [25]

    Ding X, Shen S C, Leng H Q, Xu M H, Zhao Y, Zhao J R, Sui X L, Wu X Q, Xiao H Y, Zu X T, Huang B, Luo H Q, Yu P, Qiao L 2022 Sci. China Phys. Mech. Astron. 65 267411Google Scholar

    [26]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [27]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [28]

    罗会仟 2024 现代物理知识 36 46

    Luo H Q 2024 Mod. Phys. 36 46

    [29]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [30]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [31]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [32]

    Wu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [33]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [34]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [35]

    龚冬良, 罗会仟 2018 物理学报 67 207407Google Scholar

    Gong D L, Luo H Q 2018 Acta Phys. Sin. 67 207407Google Scholar

    [36]

    Luo H Q 2017 Chin. Sci. Bull. 62 3955Google Scholar

    [37]

    Gong D L, Yi M, Wang M, Xie T, Zhang W L, Danilkin S, Deng G C, Liu X Z, Park J T, Ikeuchi K, Kamazawa K, Mo S K, Hashimoto M, Lu D H, Zhang R, Dai P C, Birgeneau R J, Li S L, Luo H Q 2022 Front. Phys. 10 886459Google Scholar

    [38]

    Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709Google Scholar

    [39]

    Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W, Dai P C 2012 Phys. Rev. Lett. 108 247002Google Scholar

    [40]

    Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M, Dai P C 2013 Phys. Rev. Lett. 110 257001Google Scholar

    [41]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S Y, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [42]

    Meier W R, Kong T, Bud’ko S L, Canfield P C 2017 Phys. Rev. Materials 1 013401Google Scholar

    [43]

    Kreyssig A, Wilde J M, Böhmer A E, Tian W, Meier W R, Li B, Ueland B G, Xu M Y, Bud’ko S L, Canfield P C, McQueeney R J, Goldman A I 2018 Phys. Rev. B 97 224521Google Scholar

    [44]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [45]

    Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Xu X G, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S, Mu G 2019 J. Phys. Chem. C 123 13925Google Scholar

    [46]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A, Cao G H 2017 J. Phys.: Condens. Matter 29 11LT01Google Scholar

    [47]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Cao G H 2017 Chem. Mater. 29 1805Google Scholar

    [48]

    Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y, Cao G H 2017 Phys. Rev. Materials 1 044804Google Scholar

    [49]

    Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A, Cao G H 2012 J. Am. Chem. Soc. 134 12893Google Scholar

    [50]

    Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu F Y, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S L, Liu H Y, Duan Y X, Luo H Q, Meng J Q 2022 Sci. China Phys. Mech. Astron. 65 237411Google Scholar

    [51]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [52]

    de la Cruz C, Huang Q, Lynn J W, Li J Y, Ratcliff W II, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899Google Scholar

    [53]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [54]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003Google Scholar

    [55]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [56]

    Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y, Wen H H 2008 Supercond. Sci. Technol. 21 125014Google Scholar

    [57]

    Chen Y C, Lu X Y, Wang M, Luo H Q, Li S L 2011 Supercond. Sci. Technol. 24 065004Google Scholar

    [58]

    Katayama N, Kudo K, Onari S, Mizukami T, Sugawara K, Sugiyama Y, Kitahama Y, Iba K, Fujimura K, Nishimoto N, Nohara M, Sawa H 2013 J. Phys. Soc. Jpn. 82 123702Google Scholar

    [59]

    Xie T, Gong D L, Zhang W L, Gu Y H, Huesges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L, Luo H Q 2017 Supercond. Sci. Technol. 30 095002Google Scholar

    [60]

    Ni N, Straszheim W E, Williams D J, Tanatar M A, Prozorov R, Bauer E D, Ronning F, Thompson J D, Cava R J 2013 Phys. Rev. B 87 060507Google Scholar

    [61]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522Google Scholar

    [62]

    Jiang S, Liu L, Schütt M, Hallas A M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke G M, Uemura Y J, Fernandes R M, Ni N 2016 Phys. Rev. B 93 174513Google Scholar

    [63]

    Sun Y, Ablimit A, Bao J, Jiang H, Zhou J, Cao G H 2013 Sci. Technol. Adv. Mater. 14 055008Google Scholar

    [64]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl Acad. Sci. USA 108 E1019Google Scholar

    [65]

    Sapkota A, Tucker G S, Ramazanoglu M, Tian W, Ni N, Cava R J, McQueeney R J, Goldman A I, Kreyssig A 2014 Phys. Rev. B 90 100504(RGoogle Scholar

    [66]

    Wu Q Y, Zhang C, Li Z Z, Hong W S, Liu H, Song J J, Zhao Y Z, Yuan Y H, Meng J Q 2023 Phys. Rev. B 108 205136Google Scholar

    [67]

    Sato M, Kawamata T, Kobayashi Y, Yasui Y, Iida T, Suzuki K, Itoh M, Moyoshi T, Motoya K, Kajimoto R, Nakamura M, Inamura Y, Arai M 2011 J. Phys. Soc. Jpn. 80 093709Google Scholar

    [68]

    Ikeuchi K, Kobayashi Y, Suzuki K, Itoh M, Kajimoto R, Bourges P, Christianson A D, Nakamura H, Machida M, Sato M 2014 JPS Conf. Proc. 3 015043Google Scholar

    [69]

    Fernandes R M, Kivelson S A, Berg E 2016 Phys. Rev. B 93 014511Google Scholar

    [70]

    Allred J M, Taddei K M, Bugaris D E, Krogstad M J, Lapidus S H, Chung D Y, Claus H, Kanatzidis M G, Brown D E, Kang J, Fernandes R M, Eremin I, Rosenkranz S, Chmaissem O, Osborn R 2016 Nat. Phys. 12 493Google Scholar

    [71]

    Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P, Meingast C 2015 Nat. Commun. 6 7911Google Scholar

    [72]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M, Claus H, Chung D Y, Kanatzidis M, Osborn R, Rosenkranz S, Chmaissem O 2017 Phys. Rev. B 95 064508Google Scholar

    [73]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M J, Stadel R, Claus H, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Chmaissem O 2016 Phys. Rev. B 93 134510Google Scholar

    [74]

    Meier W R, Ding Q P, Kreyssig A, Bud’ko S L, Sapkota A, Kothapalli K, Borisov V, Valentí R, Batista C D, Orth P P, Fernandes R M, Goldman A I, Furukawa Y, Böhmer A E, Canfield P C 2018 npj Quantum Mater. 3 5Google Scholar

    [75]

    Xie T, Wei Y, Gong D L, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S L, Hu J P, Luo H Q 2008 Phys. Rev. Lett. 120 267003Google Scholar

    [76]

    Xie T, Liu C, Bourdarot F, Regnault L P, Li S L, Luo H Q 2020 Phys. Rev. Research 2 022018(RGoogle Scholar

    [77]

    Liu C, Bourges P, Sidis Y, Xie T, He G H, Bourdarot F, Danilkin S, Ghosh H, Ghosh S, Ma X Y, Li S L, Li Y, Luo H Q 2022 Phys. Rev. Lett. 128 137003Google Scholar

    [78]

    Hong W S, Song L X, Liu B, Li Z Z, Zeng Z Y, Li Y, Wu D S, Sui Q T, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J P, Zhao L, Zhou X J, Qiu X G, Li S L, Luo H Q 2020 Phys. Rev. Lett. 125 117002Google Scholar

    [79]

    Lu X Y, Scherer D D, Tam D W, Zhang W L, Zhang R, Luo H Q, Harriger L W, Walker H C, Adroja D T, Andersen B M, Dai P C 2018 Phys. Rev. Lett. 121 067002Google Scholar

    [80]

    Canfield P C, Bud’ko S L 2010 Annu. Rev. Condens. Matter Phys. 1 27Google Scholar

    [81]

    Zhou H L, Zhang Y H, Li Y, Li S L, Hong W S, Luo H Q 2022 Chin. Phys. B 31 117401Google Scholar

    [82]

    Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P, Meingast C 2016 Phys. Rev. B 93 014514Google Scholar

    [83]

    Goko T, Aczel A A, Baggio-Saitovitch E, Bud’ko S L, Canfield P C, Carlo J P, Chen G F, Dai P C, Hamann A C, Hu W Z, Kageyama H, Luke G M, Luo J L, Nachumi B, Ni N, Reznik D, Sanchez-Candela D R, Savici A T, Sikes K J, Wang N L, Wiebe C R, Williams T J, Yamamoto T, Yu W, Uemura Y J 2009 Phys. Rev. B 80 024508Google Scholar

    [84]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W 2009 New J. Phys. 11 025008Google Scholar

    [85]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud’ko S L, Canfield P C, Hannahs S T 2010 Phys. Rev. B 82 024519Google Scholar

    [86]

    Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A, Cao G H 2009 J. Phys.: Condens. Matter 21 382203Google Scholar

    [87]

    Hu D, Lu X Y, Zhang W L, Luo H Q, Li S L, Wang P P, Chen G F, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P, Yu W Q, Dai P C 2015 Phys. Rev. Lett. 114 157002Google Scholar

    [88]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [89]

    Zhang C L, Wang M, Luo H Q, Wang M Y, Liu M S, Zhao J, Abernathy D L, Maier T A, Marty K, Lumsden M D, Chi S X, Chang S, Rodriguez-Rivera J A, Lynn J W, Xiang T, Hu J P, Dai P C 2011 Sci. Rep. 1 115Google Scholar

    [90]

    Wang M, Zhang C L, Lu X Y, Tan G T, Luo H Q, Song Y, Wang M Y, Zhang X T, Goremychkin E A, Perring T G, Maier T A, Yin Z P, Haule K, Kotliar G, Dai P C 2013 Nat. Commun. 4 2874Google Scholar

    [91]

    Luo H Q, Lu X Y, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G C, Yamani Z, Dai P C 2013 Phys. Rev. B 88 144516Google Scholar

    [92]

    Lipscombe O J, Harriger L W, Freeman P G, Enderle M, Zhang C L, Wang M Y, Egami T, Hu J P, Xiang T, Norman M R, Dai P C 2010 Phys. Rev. B 82 064515Google Scholar

    [93]

    Steffens P, Lee C H, Qureshi N, Kihou K, Iyo A, Eisaki H, Braden M 2013 Phys. Rev. Lett. 110 137001Google Scholar

    [94]

    Luo H Q, Wang M, Zhang C L, Lu X Y, Regnault L P, Zhang R, Li S L, Hu J P, Dai P C 2013 Phys. Rev. Lett. 111 107006Google Scholar

    [95]

    Zhang C L, Song Y, Regnault L P, Su Y X, Enderle M, Kulda J, Tan G T, Sims Z C, Egami T, Si Q M, Dai P C 2014 Phys. Rev. B 90 140502(RGoogle Scholar

    [96]

    Song Y, Wang W Y, Zhang C L, Gu Y H, Lu X Y, Tan G T, Su Y X, Bourdarot F, Christianson A D, Li S L, Dai P C 2017 Phys. Rev. B 96 184512Google Scholar

    [97]

    Song Y, Man H R, Zhang R, Lu X Y, Zhang C L, Wang M, Tan G T, Regnault L P, Su Y X, Kang J, Fernandes R M, Dai P C 2016 Phys. Rev. B 94 214516Google Scholar

    [98]

    Waßer F, Park J T, Aswartham S, Wurmehl S, Sidis Y, Steffens P, Schmalzl K, Büchner B, Braden M 2019 npj Quantum Mater. 4 59Google Scholar

    [99]

    Rossat-Mignod J, Regnault L P, Vettier C, Bourges P, Burlet P, Bossy J, Henry J Y, Lapertot G 1991 Phys. C: Supercond. 185 86

    [100]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383Google Scholar

    [101]

    Sidis Y, Pailhès S, Hinkov V, Fauqué B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745Google Scholar

    [102]

    Yu G, Li Y, Motoyama E M, Greven M 2009 Nat. Phys. 5 873Google Scholar

    [103]

    Xie T, Gong D L, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S L, Luo H Q 2008 Phys. Rev. Lett. 120 137001Google Scholar

    [104]

    Adroja D T, Blundell S J, Lang F, Luo H Q, Wang Z C, Cao G H 2020 J.Phys.: Condens. Matter 32 435603Google Scholar

    [105]

    Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B, Hinkov V 2010 Nat. Phys. 6 178Google Scholar

    [106]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokes K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718Google Scholar

    [107]

    Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J, Birgeneau R J 2013 Phys. Rev. Lett. 110 147003Google Scholar

    [108]

    Zhang C L, Li H F, Song Y, Su Y X, Tan G T, Netherton T, Redding C, Carr S V, Sobolev O, Schneidewind A, Faulhaber E, Harriger L W, Li S L, Lu X Y, Yao D X, Das T, Balatsky A V, Brückel T, Lynn J W, Dai P C 2013 Phys. Rev. B 88 064504Google Scholar

    [109]

    Wang Q, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, Zhao J 2016 Nat. Mater. 15 159Google Scholar

    [110]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504(RGoogle Scholar

    [111]

    Wang M, Luo H Q, Zhao J, Zhang C L, Wang M, Marty K, Chi S X, Lynn J W, Schneidewind A, Li S L, Dai P C 2010 Phys. Rev. B 81 174524Google Scholar

    [112]

    Park J T, Inosov D S, Yaresko A, Graser S, Sun D L, Bourges Ph, Sidis Y, Li Y, Kim J H, Haug D, Ivanov A, Hradil K, Schneidewind A, Link P, Faulhaber E, Glavatskyy I, Lin C T, Keimer B, Hinkov V 2010 Phys. Rev. B 82 134503Google Scholar

    [113]

    Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930Google Scholar

    [114]

    Qiu Y M, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M H, Mao Z Q 2009 Phys. Rev. Lett. 103 067008Google Scholar

    [115]

    Shen S D, Zhang X W, Wo H L, Shen Y, Feng Y, Schneidewind A, Čermák P, Wang W B, Zhao J 2020 Phys. Rev. Lett. 124 017001Google Scholar

    [116]

    Ma M W, Bourges P, Sidis Y, Ivanov A, Chen G F, Ren Z A, Li Y 2023 Phys. Rev. B 107 184516Google Scholar

    [117]

    Harriger L W, Lipscombe O J, Zhang C L, Luo H Q, Wang M, Marty K, Lumsden M D, Dai P C 2012 Phys. Rev. B 85 054511Google Scholar

    [118]

    Guo J Q, Yue L, Iida K, Kamazawa K, Chen L, Han T T, Zhang Y, Li Y 2019 Phys. Rev. Lett. 122 017001Google Scholar

    [119]

    Chubukov A V, Efremov D V, Eremin I 2008 Phys. Rev. B 78 134512Google Scholar

    [120]

    Maier T A, Scalapino D J 2008 Phys. Rev. B 78 020514(RGoogle Scholar

    [121]

    Maier T A, Graser S, Scalapino D J, Hirschfeld P 2009 Phys. Rev. B 79 134520Google Scholar

    [122]

    Das T, Balatsky A V 2011 Phys. Rev. Lett. 106 157004Google Scholar

    [123]

    Mazin I I, Schmalian J 2009 Physica C 469 614Google Scholar

    [124]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512Google Scholar

    [125]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404Google Scholar

    [126]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508Google Scholar

    [127]

    Wang F, Lee D H 2011 Science 332 200Google Scholar

    [128]

    Parish M M, Hu J, Bernevig B A 2008 Phys. Rev. B 78 144514Google Scholar

    [129]

    Onari S, Kontani H, Sato M 2010 Phys. Rev. B 81 060504(RGoogle Scholar

    [130]

    Onari S, Kontani H 2012 Phys. Rev. Lett. 109 137001Google Scholar

    [131]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001Google Scholar

    [132]

    Takeuchi L, Yamakawa Y, Kontani H 2018 Phys. Rev. B 98 165143Google Scholar

    [133]

    Kontani H, Tazai R, Yamakawa Y, Onari S 2021 Adv. Phys. 70 355Google Scholar

    [134]

    Kim M G, Tucker G S, Pratt D K 2013 Phys. Rev. Lett. 110 177002Google Scholar

    [135]

    Zhang R, Wang W Y, Maier T A, Wang M, Stone M B, Chi S, Winn B, Dai P C 2018 Phys. Rev. B 98 060502(RGoogle Scholar

    [136]

    Hu D, Yin Z P, Zhang W L, Ewings R A, Ikeuchi K, Nakamura M, Roessli B, Wei Y, Zhao L X, Chen G F, Li S L, Luo H Q, Haule K 2016 Phys. Rev. B 94 094504Google Scholar

    [137]

    Xie T, Liu C, Fennell T, Stuhr U, Li S L, Luo H Q 2020 Chin. Phys. B 30 127402Google Scholar

    [138]

    Zhang C L, Yu R, Su Y X, Song Y, Wang M Y, Tan G T, Egami T, Fernandez-Baca JA, Faulhaber E, Si Q M, Dai P C 2013 Phys. Rev. Lett. 111 207002Google Scholar

    [139]

    Wang M, Yi M, Sun H L, Valdivia P, Kim M G, Xu Z J, Berlijn T, Christianson A D, Chi S X, Hashimoto M, Lu D H, Li X D, Bourret-Courchesne E, Dai P C 2016 Phys. Rev. B 93 205149Google Scholar

    [140]

    Hong W S, Zhou H L, Li Z Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X Y, Hu J P, Li S L, Luo H Q 2023 Phys. Rev. B 107 224514Google Scholar

    [141]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041Google Scholar

    [142]

    Xie T, Liu C, Kajimoto R, Ikeuchi K, Li S L, Luo H Q 2022 J. Phys.: Condens. Matter 34 474001Google Scholar

    [143]

    Luo H Q, Yamani Z, Chen Y C, Lu X Y, Wang M, Li S L, Maier T A, Danilkin S, Adroja D T, Dai P C 2012 Phys. Rev. B 86 024508Google Scholar

    [144]

    Zhang C, Harriger L W, Yin Z P, Lü W C, Wang M, Tan G T, Song Y, Abernathy D L, Tian W, Egami T, Haule K, Kotliar G, Dai P C 2014 Phys. Rev. Lett. 112 217202Google Scholar

    [145]

    Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Dai P C 2009 Nat. Phys. 5 555Google Scholar

    [146]

    Zhao J, Ratcliff W, Lynn J W, Chen G F, Luo J L, Wang N L, Hu J P, Dai P C 2008 Phys. Rev. B 78 140504(RGoogle Scholar

    [147]

    Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, Dai P C 2011 Phys. Rev. B 84 054544Google Scholar

    [148]

    Harriger L W, Liu M S, Luo H Q, Ewings R A, Frost C D, Perring T G, Dai P C 2012 Phys. Rev. B 86 140403(RGoogle Scholar

    [149]

    Liu M S, Harriger L W, Luo H Q, Wang M, Ewings R A, Guidi T, Park H W, Haule K, Kotliar G, Hayden S M, Dai P C 2012 Nat. Phys. 8 376Google Scholar

    [150]

    Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A N, Si Q M, Dai P C 2014 Science 345 657Google Scholar

    [151]

    Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M, Dai P C 2015 Phys. Rev. B 92 180504(RGoogle Scholar

    [152]

    Zhang C L Park J T, Lu X Y, Yu R, Li Y, Zhang W L, Zhao Y, Lynn J W, Si Q M, Dai P C 2015 Phys. Rev. B 91 104520Google Scholar

    [153]

    Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q, Li S L 2016 Phys. Rev. Lett. 117 227003Google Scholar

    [154]

    Tam D W, Yin Z P, Xie Y F, Wang W Y, Stone M B, Adroja D T, Walker H C, Yi M, Dai P C 2020 Phys. Rev. B 102 054430Google Scholar

    [155]

    Tam D W, Wang W Y, Zhang L, Song Y, Zhang R, Carr S V, Walker H C, Perring T G, Adroja D T, Dai P C 2019 Phys. Rev. B 99 134519Google Scholar

    [156]

    Tranquada J M, Xu G, Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148Google Scholar

    [157]

    Fujita M, Hiraka H, Matsuda M, Matsuura M, Tranquada J M, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Jpn. 81 011007Google Scholar

    [158]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 The Innovation 4 100459

    [159]

    Zeng Z Y, Zhou C K, Zhou H L, Han L K, Chi R Z, Li K, Kofu M, Nakajima K, Wei Y, Zhang W L, Mazzone D G, Meng Z Y, Li S L 2024 Nat. Phys. 20 1097Google Scholar

    [160]

    Sheng J M, Wang L, Jiang W R, Ge H, Zhao N, Li T T, Kofu M, Yu D H, Zhu W, Mei J W, Wang Z T, Wu L S 2024 arXiv: 2402.07730 [cond-mat.str-el]

    [161]

    Wu D S, Jia J J, Yang J G, Hong W S, Shu Y J, Miao T M, Yan H T, Rong H T, Ai P, Zhang X, Yin C H, Li C L, Zhang S J, Zhang F F, Yang F, Wang Z M, Zong N, Liu L J, Li R K, Wang X Y, Peng Q J, Mao H Q, Liu G D, Li S L, Luo H Q, Wu X X, Xu Z Y, Zhao L, Zhou X J 2024 Nat. Phys. 20 571Google Scholar

    [162]

    Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001Google Scholar

    [163]

    Hayden S M, Aeppli G, Mook H A, Perring T G, Mason T E, Cheong S W, Fisk Z 1996 Phys. Rev. Lett. 76 1344Google Scholar

  • [1] 胡泽, 袁园, 李历斯, 任清勇, 冯雨, 沈俊英, 罗伟, 童欣. 非弹性中子散射谱仪及其应用. 物理学报, 2025, 74(1): 012501. doi: 10.7498/aps.74.20241412
    [2] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [5] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [6] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [7] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [8] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [9] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [10] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [11] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [12] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [14] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [15] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [17] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] 蒋建军, 杨翠红, 刘拥军. 一种等效于反铁磁海森伯混合自旋链的铁磁-反铁磁交替自旋链. 物理学报, 2012, 61(6): 067502. doi: 10.7498/aps.61.067502
    [19] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [20] 曹天德, 黄清龙. 二分量高温超导机理. 物理学报, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
计量
  • 文章访问数:  246
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2024-11-20
  • 上网日期:  2024-12-05
  • 刊出日期:  2025-01-05

/

返回文章
返回