搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲时空下的Aubry-André-Harper动量态链

毛一屹 戴汉宁

引用本文:
Citation:

弯曲时空下的Aubry-André-Harper动量态链

毛一屹, 戴汉宁
cstr: 32037.14.aps.74.20241592

Aubry-André-Harper momentum-state chain in curved spacetime

MAO Yiyi, DAI Hanning
cstr: 32037.14.aps.74.20241592
PDF
HTML
导出引用
  • Anderson局域化是凝聚态物理中一个影响深远的现象, 它代表了由无序引发的本征态的根本性转变. 本文提出了一个基于超冷原子动量态晶格系统的实验方案, 用以实现弯曲时空下的Aubry-André-Harper (AAH) 模型, 并研究其中的Anderson局域化. 得益于每对相邻动量态之间耦合的单独可操控性, 动量态晶格中的耦合强度可以被编辑成幂律位置依赖的形式$J_n \propto n^{\sigma}$, 从而能够有效模拟弯曲时空. 动量态晶格中波包演化的数值计算结果表现出初始格点依赖的局域化性质, 符合理论预测的相分离现象. 通过分析波包演化动力学数据, 可以观测到相分离临界格点的移动. 同时, 本文还提出了通过调制时空弯曲参数σ来制备本征态的方案, 并在动量态晶格中进行了数值仿真. 最后, 在不同准周期调制相位下制备能谱中所有本征态, 分析了本征态的局域化性质, 验证了在能谱中共存的局域相、延展相和摇摆相. 本文为在实验中研究弯曲时空下的Anderson局域化物理提供了新的可行途径.
    Anderson localization is a profound phenomenon in condensed matter physics, representing a fundamental transition in eigenstates, which is triggered off by disorder. The one-dimensional Aubry-André-Harper (AAH) model, an iconic quasiperiodic lattice model, is one of the simplest models that demonstrate the Anderson localization transition. Recently, with the growth of interest in quantum lattice models in curved spacetime (CST), the AAH model in CST has been proposed to explore the interplay between Anderson localization and CST physics. Several CST lattice models have been realized in optical waveguide systems to date, but there are still significant challenges to the experimental preparation and measurement of states, primarily due to the difficulty in dynamically modulating the lattices in such systems. In this work, we propose an experimental scheme using a momentum-state lattice (MSL) in an ultracold atom system to realize the AAH model in CST and study the Anderson localization in this context. Due to the individually controllable coupling between adjacent momentum states in each pair, the coupling amplitude in the MSL can be encoded as a power-law position-dependent $J_n \propto n^{\sigma}$, which is conducive to the effective simulation of CST. The numerical calculation results of the MSL Hamiltonian show that the phase separation appears in a 34-site AAH chain in CST, where wave packet dynamics exhibit the localized behavior on one side of the critical site and the extended behavior on the other side. The critical site of phase separation is identified by extracting the turning points of the evolving fractal dimension and wave packet width from the evolution simulations. Furthermore, by modulating the spacetime curvature parameter σ, we propose a method of preparing the eigenstates of the AAH chain in CST, and perform numerical simulations in the MSL. By calculating the fractal dimension of eigenstates prepared using the aforementioned method, we analyze the localization properties of eigenstates under various quasiperiodic modulation phases, confirming the coexistence of localized phase, swing phase, and extended phase in the energy spectrum. Unlike traditional localized and extended phases, eigenstates in the swing phase of the AAH model in CST exhibit different localization properties under different modulation phases, indicating the existence of a swing mobility edge. Our results provide a feasible experimental method for studying Anderson localization in CST and presents a new platform for realizing quantum lattice models in curved spacetime.
      通信作者: 戴汉宁, daihan@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074367)、国家重点研发计划(批准号: 2020YFA0309804, 2023YFC2206200)、上海市市级科技重大专项(批准号: 2019SHZDZX01)和科技创新2030—“量子通信与量子计算机”重大项目(批准号: 2021ZD0302002)资助的课题.
      Corresponding author: DAI Hanning, daihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key R&D Program of China (Grant Nos. 2020YFA0309804, 2023YFC2206200), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002).
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [3]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [4]

    Mott N F 2001 Adv. Phys. 50 865Google Scholar

    [5]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [6]

    Kondov S S, McGehee W R, Zirbel J J, DeMarco B 2011 Science 334 66Google Scholar

    [7]

    Jendrzejewski F, Bernard A, Müller K, et al. 2012 Nat. Phys. 8 398Google Scholar

    [8]

    Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M, Modugno G 2015 Nat. Phys. 11 554Google Scholar

    [9]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [10]

    Sperling T, Bührer W, Aegerter C M, Maret G 2013 Nat. Photonics 7 48Google Scholar

    [11]

    Wiersma D S 2013 Nat. Photonics 7 188Google Scholar

    [12]

    Yu S, Qiu C W, Chong Y, Torquato S, Park N 2021 Nat. Rev. Mater. 6 226Google Scholar

    [13]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [14]

    Das Sarma S, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280Google Scholar

    [15]

    Das Sarma S, He S, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [16]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [17]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [18]

    Yao H, Khoudli A, Bresque L, Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405Google Scholar

    [19]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [20]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301Google Scholar

    [21]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [22]

    Li X, Li X, Das Sarma S 2017 Phys. Rev. B 96 085119Google Scholar

    [23]

    Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604Google Scholar

    [24]

    Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S, Bloch I 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [25]

    An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603Google Scholar

    [26]

    Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C, Jia S 2022 Phys. Rev. Lett. 129 103401Google Scholar

    [27]

    HAWKING S W 1974 Nature 248 30Google Scholar

    [28]

    Unruh W G 1976 Phys. Rev. D 14 870Google Scholar

    [29]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351Google Scholar

    [30]

    Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785Google Scholar

    [31]

    Muñoz de Nova J R, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688Google Scholar

    [32]

    Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404Google Scholar

    [33]

    Almeida C R, Jacquet M J 2023 Eur. Phys. J. H 48 15Google Scholar

    [34]

    Kedem Y, Bergholtz E J, Wilczek F 2020 Phys. Rev. Res. 2 043285Google Scholar

    [35]

    Morice C, Moghaddam A G, Chernyavsky D, van Wezel J, van den Brink J 2021 Phys. Rev. Res. 3 L022022Google Scholar

    [36]

    Sheng C, Huang C, Yang R, Gong Y, Zhu S, Liu H 2021 Phys. Rev. A 103 033703Google Scholar

    [37]

    Mertens L, Moghaddam A G, Chernyavsky D, Morice C, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 043084Google Scholar

    [38]

    Könye V, Morice C, Chernyavsky D, Moghaddam A G, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 033237Google Scholar

    [39]

    Li S Z, Yu X J, Zhu S L, Li Z 2023 Phys. Rev. B 108 094209Google Scholar

    [40]

    Wang Y, Sheng C, Lu Y H, et al. 2020 Natl. Sci. Rev. 7 1476Google Scholar

    [41]

    He R, Zhao Y, Sheng C, Duan J, Wei Y, Sun C, Lu L, Gong Y X, Zhu S, Liu H 2024 Phys. Rev. Res. 6 013233Google Scholar

    [42]

    Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [43]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [44]

    Parshin D A, Schober H R 1999 Phys. Rev. Lett. 83 4590Google Scholar

    [45]

    Zhou X C, Wang Y, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401Google Scholar

    [46]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [47]

    Li H, Dong Z, Longhi S, Liang Q, Xie D, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [48]

    Yuan T, Zeng C, Mao Y Y, Wu F F, Xie Y J, Zhang W Z, Dai H N, Chen Y A, Pan J W 2023 Phys. Rev. Res. 5 L032005Google Scholar

    [49]

    Zeng C, Shi Y R, Mao Y Y, et al. 2024 Phys. Rev. Lett. 132 063401Google Scholar

    [50]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [51]

    Xiao T, Xie D, Gou W, Chen T, Deng T S, Yi W, Yan B 2020 Eur. Phys. J. D 74 152Google Scholar

    [52]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

  • 图 1  (a)平坦时空下的AAH模型示意图, 其中$ \sigma=0 $, 跃迁均为J; (b)弯曲时空下的AAH模型示意图, 其中$ \sigma \geqslant 1 $, 跃迁$ J_n $是幂律格点位置依赖的; (c) $ \sigma=0 $的平坦时空和(d) $ \sigma=1 $的弯曲时空下AAH链本征态的分形维数$ \varGamma $作为本征能量$ E/J $和调制强度$ \lambda/J $的函数. 图(c)中$ \phi=0 $, 图(d)中数据选取了$0— 2{\text{π}}$一共$ 41 $个ϕ的值进行计算并取平均. 其他参数设置为L = F15=610

    Fig. 1.  (a) Schematic of AAH model in flat spacetime, where $ \sigma=0 $ and all hoppings are J. (b) Schematic of AAH model in curved spacetime, where $ \sigma \geqslant 1 $ and hopping $ J_n $ is power-law site position dependent. Fractal dimensions $ \varGamma $ of eigenstates of AAH chain in (c) flat spacetime with $ \sigma=0 $ and (d) curved spacetime with $ \sigma=1 $ as a function of the eigenenergy $ E/J $ and modulation amplitude $ \lambda/J $. In panel (c) $ \phi=0 $, and data in panel (d) are calculated and averaged over $ 41 $ values of ϕ ranging from $ 0 $ to $ 2{\text{π}} $. Other parameters: $ L=F_{15}=610 $.

    图 2  (a)动量态晶格示意图; (b)弯曲时空下AAH链中的波包演化动力学. 从左至右$ \lambda/J $分别取$ 0 $, $ 1.0 $, $ 1.5 $和$ 3.0 $, 上图和下图的波包初始格点分别为$ n_0 = 10 $和$ n_0=30 $. 灰色虚线标记了相分离临界格点$ n_{\rm{c}} $的理论值, 其他参数设置: $ \sigma = 1 $, $ \phi=0 $

    Fig. 2.  (a) Schematic of momentum-state lattice; (b) wave packet evolution dynamics in AAH chain in curved spacetime. From left to right, $ \lambda/J = 0 $, $ 1.0 $, $ 1.5 $, and $ 3.0 $. The initial sites of wave packet are $ n_0 = 10 $ (top panel) and $ n_0 = 30 $ (bottom panel), respectively. The grey dashed line marks the theoretical value of the phase separation critical site $ n_{\rm{c}} $. Other parameters: $ \sigma = 1 $ and $ \phi=0 $.

    图 3  观测相分离临界格点. 不同格点能量调制强度$ \lambda/J $下, (a)时间平均的演化分形维数$ \overline{\varGamma}_{\rm{evo}} $和(b)时间平均的波包宽度$ \overline{W} $作为波包初始格点位置的函数, 其中时间平均的范围为$ 1\;{\mathrm{ms}} $总演化时间的最后$ 0.5\;{\mathrm{ms }}$. (c)相分离临界格点$ n_{\rm{c}} $作为$ \lambda/J $的函数, 其中红色菱形和蓝色菱形分别从$ \overline{\varGamma}_{\rm{evo}} $和$ \overline{W} $数据中计算得到, 黑线是理论计算值. 其他参数设置: $ \sigma = 1 $以及$ \phi=0 $

    Fig. 3.  Observation of the phase separation critical site: (a) The time-averaged evolving fractal dimension $ \overline{\varGamma}_{\rm{evo}} $ and (b) the time-averaged wave packet width $ \overline{W} $ as a function of the initial site for various $ \lambda/J $, where the time averaging range covers the final $ 0.5\;{\mathrm{ms }} $ of the total evolution time of $ 1\;{\mathrm{ms }} $; (c) the phase separation critical site $ n_{\rm{c}} $ as a function of $ \lambda/J $. The red and blue diamonds are obtained from the data of $ \overline{\varGamma}_{\rm{evo}} $ and $ \overline{W} $, respectively, and the black line represents the theoretical value. Other parameters: $ \sigma = 1 $ and $ \phi=0 $.

    图 4  本征能量(a) $ E/J = -2.131 $和(b) $ E/J = 0.122 $的本征态制备过程的能谱, 其中蓝色点为制备路径, 红色点为同一时刻下与制备路径上本征态之间绝热参数$ A > 0.1 $的本征态; (c)和(d)分别为(a)和(b)中对应的制备保真度, 插图中蓝色柱状图分别是零时刻的波包分布和保持阶段的时间平均波包分布, 虚线柱状图为对应的理论本征态. 制备参数: (a) $ n_0 = 33 $, $ \alpha = 3 $, $ t_{\rm{evo}} = $$ 0.80 $ms以及$ \sigma= 30 \to 1 $; (b) $ n_0 = 23 $, $ \alpha = 5 $, $ t_{\rm{evo}} = 0.80 $ ms以及$ \sigma= 30 \to 1 $. 保持阶段(阴影区域)持续时间为$ t_{\rm{hold}} = $$ 0.25 $ ms, 其他参数设置: $ \lambda/J = 1.5 $以及$ \phi=0 $

    Fig. 4.  Energy spectrum of the preparation process of eigenstates with eigenenergy (a) $ E/J = -2.131 $ and (b) $ E/J = 0.122 $, where the blue points represent the preparation path, and red points mark eigenstates with an adiabatic parameter $ A > 0.1 $ with the eigenstate in the preparation path at the same time. (c) and (d) are the corresponding preparation fidelity in panels (a) and (b), respectively. In the insets, the blue bars indicate the wave packet distribution at zero time and the time-averaged wave packet distribution during the holding stage, while the dotted bars denote the corresponding theoretical eigenstates. Preparation parameters: (a) $ n_0 = 33 $, $ \alpha = 3 $, $ t_{\rm{evo}} = 0.80 $ ms, and $ \sigma= 30 \to 1 $; (b) $ n_0 = 23 $, $ \alpha = 5 $, $ t_{\rm{evo}} = 0.80 $ ms, and $ \sigma= 30 \to 1 $. The holding stage (shaded area) lasts for $ t_{\rm{hold}} = 0.25 $ ms. Other parameters: $ \lambda/J = 1.5 $ and $ \phi=0 $.

    图 5  观测能谱中三种不同的相 (a)本征能量作为能级指标β的函数, 其中蓝色点为$ L_{\rm{loc}} = 24 $的局域子链, 红色点为$ L_{\rm{ext}} = $$ 10 $的延展子链, 时空弯曲参数$ \sigma=1 $; (b) $ \overline{\varGamma} $作为本征能量的函数, 其中阴影区域取自图(a). 数据点包含$ \phi = 0 $, $ 0.5\pi $, $ 1.0\pi $和$ 1.5\pi $四种相位, 制备过程中σ从$ 30 $动态调制到$ 1 $. 其他参数: $ \lambda/J = 1.5 $

    Fig. 5.  Observation of three distinct phase in the energy spectrum: (a) Eigenenergy as a function of energy level index. Here, the blue points denote the localized subchain with $ L_{\rm{loc}} = 24 $, and the red points represent the extended subchain with $ L_{\rm{ext}} = 10 $. The spacetime curvature parameter $ \sigma = 1 $; (b) $ \overline{\varGamma} $ as a function of eigenenergy, where the shaded area is taken from panel (a). The data consists of four phases $ \phi = 0 $, $ 0.5\pi $, $ 1.0\pi $ and $ 1.5\pi $, and σ is modulated from $ 30 $ to $ 1 $ during preparation. Other parameters: $ \lambda/J = 1.5 $.

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287Google Scholar

    [3]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [4]

    Mott N F 2001 Adv. Phys. 50 865Google Scholar

    [5]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [6]

    Kondov S S, McGehee W R, Zirbel J J, DeMarco B 2011 Science 334 66Google Scholar

    [7]

    Jendrzejewski F, Bernard A, Müller K, et al. 2012 Nat. Phys. 8 398Google Scholar

    [8]

    Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M, Modugno G 2015 Nat. Phys. 11 554Google Scholar

    [9]

    Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [10]

    Sperling T, Bührer W, Aegerter C M, Maret G 2013 Nat. Photonics 7 48Google Scholar

    [11]

    Wiersma D S 2013 Nat. Photonics 7 188Google Scholar

    [12]

    Yu S, Qiu C W, Chong Y, Torquato S, Park N 2021 Nat. Rev. Mater. 6 226Google Scholar

    [13]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673Google Scholar

    [14]

    Das Sarma S, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280Google Scholar

    [15]

    Das Sarma S, He S, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [16]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [17]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [18]

    Yao H, Khoudli A, Bresque L, Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405Google Scholar

    [19]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [20]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301Google Scholar

    [21]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [22]

    Li X, Li X, Das Sarma S 2017 Phys. Rev. B 96 085119Google Scholar

    [23]

    Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604Google Scholar

    [24]

    Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Das Sarma S, Bloch I 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [25]

    An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S, Gadway B 2021 Phys. Rev. Lett. 126 040603Google Scholar

    [26]

    Wang Y, Zhang J H, Li Y, Wu J, Liu W, Mei F, Hu Y, Xiao L, Ma J, Chin C, Jia S 2022 Phys. Rev. Lett. 129 103401Google Scholar

    [27]

    HAWKING S W 1974 Nature 248 30Google Scholar

    [28]

    Unruh W G 1976 Phys. Rev. D 14 870Google Scholar

    [29]

    Unruh W G 1981 Phys. Rev. Lett. 46 1351Google Scholar

    [30]

    Hu J, Feng L, Zhang Z, Chin C 2019 Nat. Phys. 15 785Google Scholar

    [31]

    Muñoz de Nova J R, Golubkov K, Kolobov V I, Steinhauer J 2019 Nature 569 688Google Scholar

    [32]

    Drori J, Rosenberg Y, Bermudez D, Silberberg Y, Leonhardt U 2019 Phys. Rev. Lett. 122 010404Google Scholar

    [33]

    Almeida C R, Jacquet M J 2023 Eur. Phys. J. H 48 15Google Scholar

    [34]

    Kedem Y, Bergholtz E J, Wilczek F 2020 Phys. Rev. Res. 2 043285Google Scholar

    [35]

    Morice C, Moghaddam A G, Chernyavsky D, van Wezel J, van den Brink J 2021 Phys. Rev. Res. 3 L022022Google Scholar

    [36]

    Sheng C, Huang C, Yang R, Gong Y, Zhu S, Liu H 2021 Phys. Rev. A 103 033703Google Scholar

    [37]

    Mertens L, Moghaddam A G, Chernyavsky D, Morice C, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 043084Google Scholar

    [38]

    Könye V, Morice C, Chernyavsky D, Moghaddam A G, van den Brink J, van Wezel J 2022 Phys. Rev. Res. 4 033237Google Scholar

    [39]

    Li S Z, Yu X J, Zhu S L, Li Z 2023 Phys. Rev. B 108 094209Google Scholar

    [40]

    Wang Y, Sheng C, Lu Y H, et al. 2020 Natl. Sci. Rev. 7 1476Google Scholar

    [41]

    He R, Zhao Y, Sheng C, Duan J, Wei Y, Sun C, Lu L, Gong Y X, Zhu S, Liu H 2024 Phys. Rev. Res. 6 013233Google Scholar

    [42]

    Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [43]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [44]

    Parshin D A, Schober H R 1999 Phys. Rev. Lett. 83 4590Google Scholar

    [45]

    Zhou X C, Wang Y, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401Google Scholar

    [46]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [47]

    Li H, Dong Z, Longhi S, Liang Q, Xie D, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [48]

    Yuan T, Zeng C, Mao Y Y, Wu F F, Xie Y J, Zhang W Z, Dai H N, Chen Y A, Pan J W 2023 Phys. Rev. Res. 5 L032005Google Scholar

    [49]

    Zeng C, Shi Y R, Mao Y Y, et al. 2024 Phys. Rev. Lett. 132 063401Google Scholar

    [50]

    Gadway B 2015 Phys. Rev. A 92 043606Google Scholar

    [51]

    Xiao T, Xie D, Gou W, Chen T, Deng T S, Yi W, Yan B 2020 Eur. Phys. J. D 74 152Google Scholar

    [52]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] 蔡德欢, 屈苏平. 周期驱动拉曼晶格系统中的动力学拓扑现象. 物理学报, 2024, 73(14): 140301. doi: 10.7498/aps.73.20240535
    [4] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [5] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [6] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [7] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211308
    [8] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [9] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [10] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [11] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [12] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [13] 吕腾博, 张沛, 武瑞涛, 王小力. 弯曲时空中转动对自旋流的影响. 物理学报, 2019, 68(12): 120401. doi: 10.7498/aps.68.20182260
    [14] 赵洋洋, 宋筠. 无序效应对1T-TaS2材料中Mott绝缘相的影响. 物理学报, 2017, 66(5): 057101. doi: 10.7498/aps.66.057101
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [17] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [18] 李双九. 爱因斯坦转盘上的热平衡及其时空对偶性. 物理学报, 2004, 53(10): 3252-3257. doi: 10.7498/aps.53.3252
    [19] 熊锦, 牛中奇, 张智明. 原子质心运动的量子效应对光场量子噪声压缩的影响. 物理学报, 2002, 51(10): 2245-2244. doi: 10.7498/aps.51.2245
    [20] 魏国柱. 对称Anderson晶格基态的局域方法近似. 物理学报, 1987, 36(11): 1433-1440. doi: 10.7498/aps.36.1433
计量
  • 文章访问数:  318
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-13
  • 修回日期:  2024-11-24
  • 上网日期:  2024-12-04

/

返回文章
返回