搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性光学元件的偏振-时间超纠缠W态浓缩

郭鹏亮 席舜 高成艳

引用本文:
Citation:

基于线性光学元件的偏振-时间超纠缠W态浓缩

郭鹏亮, 席舜, 高成艳
cstr: 32037.14.aps.74.20241642

Hyperentanglement W state concentration for polarization-time-bin photon systems with linear optics

GUO Pengliang, XI Shun, GAO Chengyan
cstr: 32037.14.aps.74.20241642
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 量子通信得到快速的发展, 利用超纠缠态进行量子通信越来越广泛, 量子通信过程中大多使用的是最大超纠缠态, 而最大超纠缠态容易受到噪声的影响, 变成非最大超纠缠态, 将直接影响通信的质量. 因此, 本文提出利用线性光学元件对偏振-时间超纠缠W态浓缩的方案, 方案不需要借助辅助光子, 只需要用光学元件对接收的光子进行局部操作, 通过参数分裂法实现三光子偏振-时间超纠缠W态的浓缩, 此外方案还可以推广到N光子的超纠缠W态的浓缩. 本研究将为多方量子通信的远距离实现提供理论参考.
    In recent years, quantum communication technology has developed rapidly, and quantum communication schemes based on hyperentangled states have attracted widespread attention due to their efficiency and security. However, in practical communication, maximally hyperentangled states are highly susceptible to environmental noise, which causes them to degrade into non-maximally hyperentangled states. This degradation significantly reduces the fidelity of the quantum information and communication efficiency. In this article, we propose an efficient entanglement concentration scheme to restore degraded polarization-time hyperentangled W states, thereby enhancing the reliability and transmission distance of multiparty quantum communication. The protocol employs the parameter-splitting approach, where the receiver performs local operations on received non-maximally hyperentangled photons by using linear optical elements, achieving hyperentanglement concentration through detector responses and post-selection. This method eliminates the need for auxiliary photons, thereby reducing the use of quantum resources and maintaining operational simplicity. Moreover, the scheme can be extended to N-photon hyperentangled W states. The theoretical calculations demonstrate that the success probability of the protocol is determined by the minimal parameter of the hyperentangled state, exhibiting a monotonic increase as this parameter grows. Under ideal conditions, the maximum success probability approaches unity and the success probability improves with the number of entangled photons increasing. When considering the efficiency of practical optical components, the maximal success probabilities for hyperentangled W states with N = 3, 4, and 5 are found to be 0.856, 0.791, and 0.732, respectively. Consequently, the proposed scheme efficiently concentrates the degraded polarization-time hyperentangled W state into the maximally hyperentangled state. This work is of significant importance for long-distance information transmission and provides theoretical references for implementing long-distance multi-party quantum communication.
      通信作者: 郭鹏亮, guopengliang@tynu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12305025)、山西省基础研究计划(批准号: 20210302124538, 202303021222218)和山西省高等学校科技创新项目(批准号: 2021L422, 2021L424)资助的课题.
      Corresponding author: GUO Pengliang, guopengliang@tynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12305025), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 20210302124538, 202303021222218), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP), China (Grant Nos. 2021L422, 2021L424).
    [1]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501Google Scholar

    [2]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [3]

    Liu W Q, Wei H R, Kwek L C 2020 Phys. Rev. Appl. 14 054057Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304Google Scholar

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [7]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [8]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [9]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [10]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [11]

    Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311Google Scholar

    [12]

    Ying J W, Zhao P, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2024 Phys. Rev. Appl. 22 024040Google Scholar

    [13]

    Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024 Fundam. Res. 4 851Google Scholar

    [14]

    Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339Google Scholar

    [15]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [16]

    Graham T M, Bernstein H J, Wei T C, Junge M, Kwiat P G 2015 Nat. Commun. 6 7185Google Scholar

    [17]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328Google Scholar

    [18]

    Ren B C, Wei H R, Deng F G 2013 Laser. Phys. Lett. 10 095202Google Scholar

    [19]

    任宝藏, 邓富国 2015 物理学报 64 160303Google Scholar

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303Google Scholar

    [20]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046Google Scholar

    [21]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301Google Scholar

    [22]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304Google Scholar

    [23]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325Google Scholar

    [24]

    Gu Y J, Xian L, Li W D, Ma L Z 2008 Chin. Phys Lett. 25 1191Google Scholar

    [25]

    Zhou L, Sheng Y B, Zhao S M 2013 Chin. Phys. B 22 020307Google Scholar

    [26]

    Guo R, Zhou L, Gu S P, Wang X F, Sheng Y B 2016 Chin. Phys. B 25 030302.Google Scholar

    [27]

    赵瑞通, 梁瑞生, 王发强 2017 物理学报 66 240301Google Scholar

    Zhao R T, Liang R S, Wang F Q 2017 Acta Phys. Sin. 66 240301Google Scholar

    [28]

    Zhou L, Wang D D, Wang X F, Gu S P, Sheng Y B 2017 Chin. Phys. B 26 020302Google Scholar

    [29]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302Google Scholar

    [30]

    Ren B C, Long G L 2015 Sci. Rep. 5 16444Google Scholar

    [31]

    Li X H, Ghose S 2015 Phys. Rev. A 91 062302Google Scholar

    [32]

    Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016 Ann. Phys. 369 128Google Scholar

    [33]

    Li C Y, Shen Y 2019 Opt. Express 27 13172Google Scholar

    [34]

    Liu Q, Song G Z, Qiu T H, Zhang X M, Ma H Y, Zhang M 2020 Sci. Rep. 10 21444Google Scholar

    [35]

    Jiang G L, Liu W Q, Wei H R 2023 Phys. Rev. Appl. 19 034044Google Scholar

    [36]

    Shi X, Lu Y, Peng N, Rottwitt K, Ou H J 2022 J. Lightwave Technol. 40 7626Google Scholar

    [37]

    Passos M H M, Balthazar W F, Khoury A Z, Hor-Meyll M, Davidovich L, Huguenin J A O 2018 Phys. Rev. A. 97 022321Google Scholar

    [38]

    Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar

  • 图 1  偏振-时间自由度的超纠缠W态的浓缩示意图 (PBS为偏振分束器, PCL为普克尔斯盒, Dj为单光子探测器, DL为延时装置, Rθj为波片, 下标j = A或B)

    Fig. 1.  Schematic diagram of the concentration of hyperentangled W states in polarization and time-bin degrees of freedom (PBS is the polarization beam splitter, PCL is the Pockels Cells, Dj is the single photon detector, DL denotes the time-delay device, and Rθj is the wave plate, where j = A or B)

    图 2  浓缩的成功概率P随系数a3, b3变化的示意图

    Fig. 2.  Schematic diagram of success probability P of entanglement concentration versus the coefficient a3, b3.

    图 3  浓缩的成功概率P与系数bN (aN)的关系示意图

    Fig. 3.  Schematic diagram of success probability P of entanglement concentration versus the coefficient bN (aN).

  • [1]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501Google Scholar

    [2]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [3]

    Liu W Q, Wei H R, Kwek L C 2020 Phys. Rev. Appl. 14 054057Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304Google Scholar

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [7]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [8]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [9]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [10]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [11]

    Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311Google Scholar

    [12]

    Ying J W, Zhao P, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2024 Phys. Rev. Appl. 22 024040Google Scholar

    [13]

    Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024 Fundam. Res. 4 851Google Scholar

    [14]

    Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339Google Scholar

    [15]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [16]

    Graham T M, Bernstein H J, Wei T C, Junge M, Kwiat P G 2015 Nat. Commun. 6 7185Google Scholar

    [17]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328Google Scholar

    [18]

    Ren B C, Wei H R, Deng F G 2013 Laser. Phys. Lett. 10 095202Google Scholar

    [19]

    任宝藏, 邓富国 2015 物理学报 64 160303Google Scholar

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303Google Scholar

    [20]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046Google Scholar

    [21]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301Google Scholar

    [22]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304Google Scholar

    [23]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325Google Scholar

    [24]

    Gu Y J, Xian L, Li W D, Ma L Z 2008 Chin. Phys Lett. 25 1191Google Scholar

    [25]

    Zhou L, Sheng Y B, Zhao S M 2013 Chin. Phys. B 22 020307Google Scholar

    [26]

    Guo R, Zhou L, Gu S P, Wang X F, Sheng Y B 2016 Chin. Phys. B 25 030302.Google Scholar

    [27]

    赵瑞通, 梁瑞生, 王发强 2017 物理学报 66 240301Google Scholar

    Zhao R T, Liang R S, Wang F Q 2017 Acta Phys. Sin. 66 240301Google Scholar

    [28]

    Zhou L, Wang D D, Wang X F, Gu S P, Sheng Y B 2017 Chin. Phys. B 26 020302Google Scholar

    [29]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302Google Scholar

    [30]

    Ren B C, Long G L 2015 Sci. Rep. 5 16444Google Scholar

    [31]

    Li X H, Ghose S 2015 Phys. Rev. A 91 062302Google Scholar

    [32]

    Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016 Ann. Phys. 369 128Google Scholar

    [33]

    Li C Y, Shen Y 2019 Opt. Express 27 13172Google Scholar

    [34]

    Liu Q, Song G Z, Qiu T H, Zhang X M, Ma H Y, Zhang M 2020 Sci. Rep. 10 21444Google Scholar

    [35]

    Jiang G L, Liu W Q, Wei H R 2023 Phys. Rev. Appl. 19 034044Google Scholar

    [36]

    Shi X, Lu Y, Peng N, Rottwitt K, Ou H J 2022 J. Lightwave Technol. 40 7626Google Scholar

    [37]

    Passos M H M, Balthazar W F, Khoury A Z, Hor-Meyll M, Davidovich L, Huguenin J A O 2018 Phys. Rev. A. 97 022321Google Scholar

    [38]

    Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar

  • [1] 杨丽萍, 王纪平, 董莉, 修晓明, 计彦强. 基于超绝热技术快速制备里德伯超级原子W态. 物理学报, 2025, 74(10): 100305. doi: 10.7498/aps.74.20241694
    [2] 刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰. 基于超纠缠的三用户全连接量子网络. 物理学报, 2025, 74(14): . doi: 10.7498/aps.74.20250458
    [3] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [4] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [5] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [6] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [7] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [8] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] 丁东, 何英秋, 闫凤利, 高亭. 六光子超纠缠态制备方案. 物理学报, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 张闻钊, 李文东, 史鹏, 顾永建. 3对非最大纠缠粒子的确定性纠缠浓缩协议. 物理学报, 2011, 60(6): 060303. doi: 10.7498/aps.60.060303
    [12] 上官丽英, 孙洪祥, 陈秀波, 温巧燕, 朱甫臣. 三粒子纠缠W态隐形传态的正交完备基展开与算符变换. 物理学报, 2009, 58(3): 1371-1376. doi: 10.7498/aps.58.1371
    [13] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [14] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [15] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [16] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [17] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态. 物理学报, 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [18] 郑亦庄, 戴玲玉, 郭光灿. 三粒子纠缠W态的隐形传态. 物理学报, 2003, 52(11): 2678-2682. doi: 10.7498/aps.52.2678
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
计量
  • 文章访问数:  356
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2025-03-30
  • 上网日期:  2025-05-10

/

返回文章
返回