搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镜像电荷对低能离子在菱形微孔中传输的影响

孙文胜 袁华 刘恩顺 杜战辉 潘俞舟 樊栩宏 王麒俊 赵崭岩 陈乾 万城亮 崔莹 朱丽萍 李鹏飞 王天琦 姚科 Reinhold Schuch 房铁峰 陈熙萌 张红强

引用本文:
Citation:

镜像电荷对低能离子在菱形微孔中传输的影响

孙文胜, 袁华, 刘恩顺, 杜战辉, 潘俞舟, 樊栩宏, 王麒俊, 赵崭岩, 陈乾, 万城亮, 崔莹, 朱丽萍, 李鹏飞, 王天琦, 姚科, Reinhold Schuch, 房铁峰, 陈熙萌, 张红强
cstr: 32037.14.aps.74.20241677

Influence of image charges on the transport of low-energy ions in rhombic micropores

SUN Wensheng, YUAN Hua, LIU Enshun, DU Zhanhui, PAN Yuzhou, FAN Xuhong, WANG Qijun, ZHAO Zhanyan, CHEN Qian, WAN Chengliang, CUI Ying, ZHU Liping, LI Pengfei, WANG Tianqi, YAO Ke, Reinhold Schuch, FANG Tiefeng, CHEN Ximeng, ZHANG Hongqiang
cstr: 32037.14.aps.74.20241677
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 进行了1 keV $ {\text{N}}_2^ + $离子束穿越完全放电的白云母微孔膜实验, 测量了零度倾角下离子束入射初期的出射离子二维角分布图. 将离子速度对通道壁介电响应的影响引入镜像电荷力表达式, 对离子在菱形通道内所受镜像电荷力进行了多阶修正. 采用不同近似情况下的镜像电荷力对实验进行了模拟计算, 结果表明离子速度对通道壁介电响应的影响会使镜像电荷力降低. 对比对镜像电荷力进行多阶修正前后的模拟结果, 修正后的结果更接近实验值. 模拟计算出的穿透离子图像和实验测得的图像形状基本吻合, 均未出现体现成型效应的矩形. 但在穿透率和半高宽方面存在差距, 实验二维角分布半高宽比计算结果大, 且实验穿透率明显小于计算结果. 我们分析了模拟计算中的几个可能影响, 评估了束流的真实状态以及束流与微孔之间的夹角等因素对模拟和实验之间的差异的影响. 束流发散度和束流与微孔间的夹角会对模拟结果产生较大影响, 但是这些因素导致的模拟结果与实验出射离子角分布的差别还不够. 本工作提供了离子束作为探针进行微孔表面介电响应研究的可能性.
    The study of low-energy, high-charge-state ions traversing insulating nanochannels has focused on the guiding effects due to the deposition of charge, while experimental and theoretical research on the influence of image charge forces caused by the polarization of the channel walls during ion transmission is relatively scarce. In this work, the experiments on 1-keV $ {\text{N}}_2^ + $ ion beams passing through muscovite microporous membranes are conducted by combining the theoretical method. Under the condition of complete discharge of the microporous membrane, the two-dimensional angular distribution of ejected ions at the initial stage of ion beam incidence at a zero-degree inclination is measured. In previous simulation calculations, first-order image force approximation and static approximation are used to calculate the image charge forces so as to simplify the calculation process. It is found that the results obtained from these calculations are still different from the experimental results. Therefore, we refine the calculation formula for image charge forces by taking into account the full effect of these forces. In previous studies of image charge forces, the influence of ion velocity on the polarization of the channel walls was neglected. The surface dielectric response theory of the image force experienced by ions within the micropores, which depends on ion velocity and the distance between the ion and the channel wall, is used to simulate and compare with the experimental results. The influence of image charge forces caused by surface dielectric response due to ion velocity on the angular distribution of ejected ions is studied. The discrepancies between the simulated and experimental two-dimensional angular distributions are found, showing that the experimental results have a wider half-height width than the simulated results. To explore the effects of beam divergence and the angle between the micropore axis and the beam on ion penetration and the two-dimensional angular distribution of ejected ions, simulation calculations for 1 keV $ {\text{N}}_2^ + $ under different beam conditions are conducted, with the third-order dynamic image charge forces considered. The several potential influences in the simulation calculations are analyzed, and the influences of the true state of the beam and the angle between the beam and the micropore on the difference between simulation and experiment are assessed. This work provides the possibility for studying the surface dielectric response of micropores by using ion beams as probes.
      通信作者: 张红强, zhanghq@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: u1732269, 12474045)资助的课题.
      Corresponding author: ZHANG Hongqiang, zhanghq@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. u1732269, 12474045).
    [1]

    Spohr R, Bethge K 1990 Ion Tracks and Microtechnology (Wiesbaden: Vieweg Verlag) p1

    [2]

    Martin C R 1994 Science 266 1961Google Scholar

    [3]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [6]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl Phys. Lett. 92 023509Google Scholar

    [7]

    Lemell C, Burgdörfer J, Aumayr F P 2013 Surf. Sci. 88 237Google Scholar

    [8]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711Google Scholar

    [9]

    Stolterfoht N 2013 Phys. Rev. A 87 012902Google Scholar

    [10]

    Stolterfoht N 2013 Phys. Rev. A 87 032901Google Scholar

    [11]

    Stolterfoht N, Hellhammer R, Juhász Z, et al. 2009 Phys. Rev. A 79 042902Google Scholar

    [12]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697Google Scholar

    [13]

    Sahana M B, Skog P, Vikor G, Rajendra-Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [14]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [15]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [16]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, et al. 2006 Nanotechnology 17 3915Google Scholar

    [17]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901Google Scholar

    [18]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 145Google Scholar

    [19]

    Juhász Z, Sulik B, Biri S, et al. 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 321Google Scholar

    [20]

    Li D, Wang Y, Zhao Y, Xiao G, Zhao D, Xu Z, Li F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 469Google Scholar

    [21]

    Stolterfoht N, Hellhammer R, Sulik B, et al. 2011 Phys. Rev. A 83 062901Google Scholar

    [22]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [23]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. , Sect. B 258 150Google Scholar

    [24]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [25]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [26]

    万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101Google Scholar

    Wan C L, Pan Y Z, ZHU L P, Zhang H W, Zhao Z Y, Yuan H, Liu P F, Fan X H, Sun W S, DU Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar

    [27]

    Pokhil G P, Vokhmyanina K A 2008 J. Surf. Invest. 2 p237Google Scholar

    [28]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [29]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [30]

    Harris J, Jones R O 1974 J. Phys. C: Solid State Phys. 7 3751Google Scholar

    [31]

    Wiza J L 1979 Nucl. Instrum. Methods. 162 587Google Scholar

    [32]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 1093Google Scholar

    [33]

    FASTER http://faster.in2p3.fr/

    [34]

    Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M 1996 Nucl. Instrum. Methods Phys. Res. , Sect. B 107 181Google Scholar

    [35]

    Ward A A 2016 ResearchGate 2 10Google Scholar

    [36]

    Giglio E 2023 Phys. Rev. A. 107 012816Google Scholar

    [37]

    Petzelt J, Rychetský I 2005 Dielectric function, Encyclopedia of Condensed Matter Physics (Amsterdam: Elsevier) p426

    [38]

    Beran A 2002 Rev. Mineral. Geochem. 46 351Google Scholar

    [39]

    Fali A, Gamage S, Howard M, et al. 2021 ACS Photonics 8 175Google Scholar

    [40]

    Agostinelli S, Allison J R, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [41]

    Zhang Q, Liu Z L, Li P F, et al. 2018 Phys. Rev. A 97 042704Google Scholar

  • 图 1  (a)实验装置的示意图. 倾角α代表毛细管轴线与入射束方向之间的夹角. 观察角ϕ是相对于入射束流方向和透射离子的方向的夹角来定义的. (b)通过化学蚀刻得到的云母膜微孔膜中单个微孔的SEM顶视图, 以及微孔的尺寸

    Fig. 1.  (a) Schematic diagram of the experimental setup. The tilt angle α represents the angle between the axis of the capillaries and the direction of the incident beam. The observation angle ϕ is defined with respect to the direction of the incident beam and the transmitted ions as illustrated. (b) SEM top view of an individual pore in a muscovite mica membrane with rhombic capillaries obtained by chemical track etching, along with the dimensions of the capillaries.

    图 2  不同倾角下, 1 keV $ {\text{N}}_2^ + $ 离子穿越白云母微孔膜达到稳态时的实验透射离子二维角分布 (a) α = –0.8°; (b) α = –0.4°; (c) α = 0°; (d) α = 0.4°; (e) α = 0.8°

    Fig. 2.  Exprimental two-dimensional angular distributions for 1 keV $ {\text{N}}_2^ + $ ions transmitted through phlogopite mica capillaries of rhombic cross-section during the steady state of transmission at various tilt angles: (a) α = –0.8°; (b) α = –0.4°; (c) α = 0°; (d) α = 0.4°; (e) α = 0.8°.

    图 3  不同倾角下1 keV $ {\text{N}}_2^ + $ 离子穿越白云母微孔膜的透射离子实验穿透率(蓝点), 红线是高斯拟合曲线

    Fig. 3.  The experimental transmission rate is plotted as a function of the title angle (blue points). The solid line in the graph is the Gaussian fit curve.

    图 4  (a)束流发散度为1.3°, 靶倾角α = 0.1°, 1 keV $ {\text{N}}_2^ + $ 离子束刚开始入射时的透射离子角分布实验结果, 角分布上方为其在ϕ方向的投影, 投影半高宽为0.68°; 右边为角分布在θ方向的投影, 投影半高宽为0.61°. (b) 3阶动态镜像电荷力作用下对实验结果模拟计算的透射离子二维角分布, 角分布上方为其在ϕ方向的投影, 投影半高宽为0.33°; 右边为角分布在θ方向的投影, 投影半高宽为0.3°

    Fig. 4.  (a) The title angle α = 0.1°, the transmission ion with a beam divergence of 1.3° experimental angular distribution of 1 keV $ {\text{N}}_2^ + $ ion beam just starting to strike, with the projection on the ϕ direction above the angular distribution, and the full width at half maximum of the projection is 0.68°; on the right is the projection of the angular distribution in the θ direction, with the full width at half maximum of the projection being 0.61°. (b) Simulated two-dimensional angular distribution of transmitted ions under the influence of third-order dynamic image charge force. The projection above the angular distribution is in the ϕ direction, with a full width at half maximum of 0.33°; the projection on the right is in the θ direction, with a full width at half maximum of 0.3°.

    图 5  在很大频率范围内的任意介质介电谱[35]. 介电函数的实部 $\varepsilon _{\text{r}}'$(红线)和虚部 ${\mathrm{i}}\varepsilon _{\text{r}}''$(黑线), 界面极化、偶极松弛、原子和电子在更高频率下的共振过程在图中标记; 右上角为24—36 THz下云母介电函数实部随电场角频率变化的曲线[38]

    Fig. 5.  Arbitrary dielectric permittivity spectrum over a wide range of frequencies[35]. The real $\varepsilon _{\text{r}}'$ (red line) and imaginary ${\mathrm{i}}\varepsilon _{\text{r}}''$ part (black line) of permittivity are shown. Various processes are labeled: Interface polarization, dipolar relaxation, atomic, and electronic resonances at higher frequencies. The upper right corner shows the curve of the real part of the dielectric function of mica as a function of the electric field angular frequency in the 24–36 THz range[38].

    图 6  (a)离子距离通道壁20, 10, 5 nm, 极化因子随离子速度v的变化曲线. 图中箭头处为1 keV $ {\text{N}}_2^ + $对应的速度; (b) 1 keV $ {\text{N}}_2^ + $离子极化因子Kimage随离子与通道壁的距离d变化曲线, 速度趋向于零时的极化因子

    Fig. 6.  (a) Polarization coefficient (Kimage) is presented as a function of ion velocity v for three different distances from the channel walls: 20, 10, and 5 nm; (b) the polarization coefficient (Kimage) of 1 keV $ {\text{N}}_2^ + $ ions in mica as a function of the distance d between the ions and the channel walls, with red line representing the static limit.

    图 7  菱形微孔截面的示意图以及像电荷的几何位置, 其中d1, d2, d3, d4代表粒子与通道壁的距离

    Fig. 7.  Schematic diagram of the rhombic micropore cross-section and the geometric positions of the image charges, where d1, d2, d3, d4 represent the distances of the particle from the walls of the channel.

    图 8  束流发散度为1.3°, 1 keV $ {\text{N}}_2^ + $离子穿越白云母微孔膜时在不同镜像电荷力作用下的模拟二维角分布 (a)不考虑镜像电荷力; (b)一阶静态镜像电荷力; (c)三阶静态镜像电荷力

    Fig. 8.  Simulated two-dimensional angular distributions of 1 keV $ {\text{N}}_2^ + $ beam divergence at 1.3° under various image charge force conditions: (a) Without image charge force; (b) with first-order static image charge force; (c) with third-order static image charge force.

    图 9  (a)倾角α = 0.1°, 束流发散度为1.3°的1 keV $ {\text{N}}_2^ + $离子穿越白云母微孔膜的实验穿透率以及不同镜像电荷力下模拟计算穿透率: 不考虑镜像电荷力、一阶静态镜像电荷力、三阶静态镜像电荷力、三阶动态镜像电荷力. (b)实验二维角分布半高宽以及模拟计算不同情况下的二维角分布半高宽: 不考虑镜像电荷力、一阶静态镜像电荷力、三阶静态镜像电荷力、三阶动态镜像电荷力

    Fig. 9.  (a) The experimental transmission rate of 1 keV $ {\text{N}}_2^ + $ beam divergence at 1.3° and the simulated calculations for different scenarios, including no image charge force, first-order static image charge force, third-order static image charge force, and third-order dynamic image charge force. (b) Experimental two-dimensional angular distribution full width at half maximum (FWHM), as well as the simulated calculations for different conditions including no image charge force, first-order static image charge force, third-order static image charge force, and third-order dynamic image charge force, and the corresponding two-dimensional angular distribution FWHM under these conditions.

    图 10  模拟计算倾角α = 0.1°, 束流发散度为(a) 0.7°和(b) 2.6°时三阶动态镜像电荷力下1 keV $ {\text{N}}_2^ + $离子穿越白云母微孔膜的出射离子二维角分布; 束流发散度为1.3°, 倾角为(c) 0.2°和(d) 0.3°时三阶动态镜像电荷力下1 keV $ {\text{N}}_2^ + $离子穿越白云母微孔膜的出射离子二维角分布

    Fig. 10.  Simulated two-dimensional angular distributions of 1 keV $ {\text{N}}_2^ + $ ions emerging from muscovite microporous membranes under the influence of third-order dynamic image charge force: (a) Beam divergence is 0.7° with an incident angle α of 0.1°; (b) beam divergence is 2.6° with an incident angle α of 0.1°; (c) beam divergence is 1.3° with an incident angle α of 0.2°; (d) beam divergence is 1.3° with an incident angle α of 0.3°.

    图 11  模拟计算倾角α = 0.1°, 束流发散度为0.7°, 1.3°和2.6°时1 keV $ {\text{N}}_2^ + $离子穿越纳米微孔在三阶动态镜像电荷力作用下的离子穿透率(a)和出射离子二维角分布的半高宽(b); 束流发散度为1.3°, 倾角α = 0.1°, 0.2°及0.3°时的离子穿透率(c)和角分布半高宽(d)

    Fig. 11.  Simulated calculations of the ion transmission rate (a) and the full width at half maximum (FWHM) of the two-dimensional angular distribution of emitted ions (b) for 1 keV $ {\text{N}}_2^ + $ ions passing through nano-pores under the influence of third-order dynamic image charge force at incident angles α of 0.1° and beam divergences of 0.7°, 1.3°, and 2.6°. Ion transmission rate (c) and angular distribution FWHM (d) for beam divergence of 1.3° and incident angles α of 0.1°, 0.2°, and 0.3°.

  • [1]

    Spohr R, Bethge K 1990 Ion Tracks and Microtechnology (Wiesbaden: Vieweg Verlag) p1

    [2]

    Martin C R 1994 Science 266 1961Google Scholar

    [3]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [6]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl Phys. Lett. 92 023509Google Scholar

    [7]

    Lemell C, Burgdörfer J, Aumayr F P 2013 Surf. Sci. 88 237Google Scholar

    [8]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711Google Scholar

    [9]

    Stolterfoht N 2013 Phys. Rev. A 87 012902Google Scholar

    [10]

    Stolterfoht N 2013 Phys. Rev. A 87 032901Google Scholar

    [11]

    Stolterfoht N, Hellhammer R, Juhász Z, et al. 2009 Phys. Rev. A 79 042902Google Scholar

    [12]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697Google Scholar

    [13]

    Sahana M B, Skog P, Vikor G, Rajendra-Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [14]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [15]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [16]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, et al. 2006 Nanotechnology 17 3915Google Scholar

    [17]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901Google Scholar

    [18]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 145Google Scholar

    [19]

    Juhász Z, Sulik B, Biri S, et al. 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 321Google Scholar

    [20]

    Li D, Wang Y, Zhao Y, Xiao G, Zhao D, Xu Z, Li F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 469Google Scholar

    [21]

    Stolterfoht N, Hellhammer R, Sulik B, et al. 2011 Phys. Rev. A 83 062901Google Scholar

    [22]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [23]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. , Sect. B 258 150Google Scholar

    [24]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [25]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [26]

    万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101Google Scholar

    Wan C L, Pan Y Z, ZHU L P, Zhang H W, Zhao Z Y, Yuan H, Liu P F, Fan X H, Sun W S, DU Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar

    [27]

    Pokhil G P, Vokhmyanina K A 2008 J. Surf. Invest. 2 p237Google Scholar

    [28]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [29]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [30]

    Harris J, Jones R O 1974 J. Phys. C: Solid State Phys. 7 3751Google Scholar

    [31]

    Wiza J L 1979 Nucl. Instrum. Methods. 162 587Google Scholar

    [32]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 1093Google Scholar

    [33]

    FASTER http://faster.in2p3.fr/

    [34]

    Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M 1996 Nucl. Instrum. Methods Phys. Res. , Sect. B 107 181Google Scholar

    [35]

    Ward A A 2016 ResearchGate 2 10Google Scholar

    [36]

    Giglio E 2023 Phys. Rev. A. 107 012816Google Scholar

    [37]

    Petzelt J, Rychetský I 2005 Dielectric function, Encyclopedia of Condensed Matter Physics (Amsterdam: Elsevier) p426

    [38]

    Beran A 2002 Rev. Mineral. Geochem. 46 351Google Scholar

    [39]

    Fali A, Gamage S, Howard M, et al. 2021 ACS Photonics 8 175Google Scholar

    [40]

    Agostinelli S, Allison J R, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [41]

    Zhang Q, Liu Z L, Li P F, et al. 2018 Phys. Rev. A 97 042704Google Scholar

  • [1] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究. 物理学报, 2025, 74(4): 043101. doi: 10.7498/aps.74.20241589
    [2] 樊金泽, 方展伯, 罗超杰, 张汇. 低维材料中的电荷密度波. 物理学报, 2022, 71(12): 127103. doi: 10.7498/aps.71.20220052
    [3] 牛书通, 周旺, 潘鹏, 朱炳辉, 宋涵宇, 邵剑雄, 陈熙萌. 30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程. 物理学报, 2018, 67(17): 176102. doi: 10.7498/aps.67.20172484
    [4] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [5] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [6] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制. 物理学报, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [7] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应. 物理学报, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [8] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [9] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [10] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [11] 刘玉文, 陈熙萌, 邵剑雄, 丁宝卫, 付宏斌, 崔 莹, 张红强, 鲁彦霞, 高志民, 杜 娟, 陈 林, 孙光智, 尹永智, 于得洋, 蔡晓红. 低电荷态离子原子碰撞过程中的转移电离机理的研究. 物理学报, 2008, 57(5): 2913-2918. doi: 10.7498/aps.57.2913
    [12] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [13] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响. 物理学报, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [14] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [15] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [16] 顾永建. 压缩真空态下介观RLC电路中电荷和电流的量子涨落. 物理学报, 2000, 49(5): 965-968. doi: 10.7498/aps.49.965
    [17] 陈志骏, 马洪良, 陈淼华, 李茂生, 施 伟, 陆福全, 汤家镛. 单电荷态钡离子超精细结构光谱. 物理学报, 1999, 48(11): 2038-2041. doi: 10.7498/aps.48.2038
    [18] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应. 物理学报, 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [19] 李景德, 邓人忠, 陈敏, 郑凤. 绝缘液体中空间电荷的扩散和介电谱. 物理学报, 1997, 46(1): 155-161. doi: 10.7498/aps.46.155
    [20] 孔祥贵, 刘益春, 鄂书林. CuPc LB膜与InP接触界面电荷态对Raman光谱的影响. 物理学报, 1994, 43(5): 809-815. doi: 10.7498/aps.43.809
计量
  • 文章访问数:  289
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-01-23
  • 刊出日期:  2025-04-05

/

返回文章
返回