搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波谐振腔中磁双层的零阻尼效应

尹凡 戴昌杰 张影 于海林 肖杨

引用本文:
Citation:

微波谐振腔中磁双层的零阻尼效应

尹凡, 戴昌杰, 张影, 于海林, 肖杨
cstr: 32037.14.aps.74.20241730

Zero damping effect of magnetic bilayer in microwave resonant cavity

YIN Fan, DAI Changjie, ZHANG Ying, YU Hailin, XIAO Yang
cstr: 32037.14.aps.74.20241730
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 实验和理论研究表明单个磁子模式与谐振腔光子能够形成相干型与耗散型耦合, 这两个耦合通道的干涉会产生零阻尼效应. 本工作将零阻尼效应拓展到两个磁子模式, 研究了微波谐振腔中磁双层的零阻尼效应. 基于本征频率和微波透射谱, 推导了两个磁子模式的零阻尼产生条件以及频率失谐的表达式, 并与数值计算的微波透射谱进行比较, 获得了零阻尼与系统参数之间的关系. 此外, 本文也分析了磁双层中界面交换耦合引起的磁子-磁子直接耦合带来的影响. 由于零阻尼对应的微波透射谱的线宽非常窄, 因而本工作对于设计基于磁子零阻尼效应的量子传感器件具有重要意义.
    Experimental and theoretical studies have shown that a single magnon mode and cavity photon can be coupled coherently and dissipatively, with the interference between two types of coupling creating zero damping effect. In magnetic bilayers or multilayers, there exists more than one magnon mode which can be directly coupled by interface exchange interaction. In this work, a single-magnon mode is extended to a two-magnon mode and the effect of the two-magnon mode on zero damping condition is investigated. Using eigenfrequency analysis and microwave transmission spectra, the analytical expressions of the zero damping condition and the frequency detuning can be derived. By comparing analytical results with numerical results, the dependence of zero damping condition on system parameters can be obtained. In the absence of direct interface exchange magnon-magnon coupling, the zero damping condition occurs for dissipative coupling or hybrid coupling. As the coupling strength increases, the distance between two zero damping points increases. For hybrid coupling, the two zero damping points turn no longer symmetric, which is different from the case of pure coupling. Moreover, the effect of interface exchange magnon-magnon interaction on zero damping condition is studied. The interface exchange coupling results in the splitting of microwave transmission spectra, but the zero damping condition occurs only in the low-frequency mode. As the interface exchange coupling strength increases, the frequency at which the zero damping condition happens will shift toward lower frequency. Due to extremely narrow line-width of microwave transmission dip under the zero damping condition, the result in this work is expected to be useful for designing the magnon-based quantum sensing devices.
      通信作者: 于海林, yuhailin_79@cslg.edu.cn ; 肖杨, fryxiao@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62374087)资助的课题.
      Corresponding author: YU Hailin, yuhailin_79@cslg.edu.cn ; XIAO Yang, fryxiao@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62374087).
    [1]

    Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [2]

    Soykal O O, Flatt´e M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [3]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [4]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [5]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [6]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [7]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [8]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [9]

    Bernier N R, T´oth L D, Feofanov A K, Kippenberg T J 2018 Phys. Rev. A 98 023841Google Scholar

    [10]

    Yu W C, Wang J J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [11]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [12]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022 Chin. Phys. B 31 127503Google Scholar

    [13]

    Bao X X, Guo G F, Yang X, Tan L 2023 Chin. Phys. B 32 080301Google Scholar

    [14]

    Liao Q, Peng K, Qiu H 2023 Chin. Phys. B 32 054205Google Scholar

    [15]

    Liu T, Zhang X, Tang H X, Flatte M E 2016 Phys. Rev. B 94 060405(RGoogle Scholar

    [16]

    Zare R B, Viola K S, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E, Blanter Y M 2022 Phys. Rep. 979 1Google Scholar

    [17]

    Harder M, Yao B, Gui Y, Hu C M 2021 J. Appl. Phys. 129 201101Google Scholar

    [18]

    Yuan H, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [19]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Exp. 12 070101Google Scholar

    [20]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [21]

    Pan H, Yang Y, An Z H, Hu C M 2022 Phys. Rev. B 106 054425Google Scholar

    [22]

    Hyde P, Yao B M, Gui Y S, Zhang G Q, You J Q, Hu C M 2018 Phys. Rev. B 98 174423Google Scholar

    [23]

    Bi M X, Yan X H, Xiao Y, Dai C J 2019 J. Appl. Phys. 126 173902Google Scholar

    [24]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411Google Scholar

    [25]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [26]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403Google Scholar

    [27]

    Hei X L, Li P B, Pan X F, Nor F 2023 Phys. Rev. Lett. 130 073602Google Scholar

    [28]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [29]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [30]

    Yang J Y, Zhao C S, Wang D W, Peng R, Zhou L 2024 Phys. Rev. Appl. 21 044056Google Scholar

    [31]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 127 087203Google Scholar

    [32]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [33]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602Google Scholar

    [34]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [35]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [36]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [37]

    Yang Y, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2019 Phys. Rev. Appl. 11 054023Google Scholar

    [38]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [39]

    Zhang X F, Zou C, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [40]

    Nair J M P, Mukhopadhyay D, Agarwal G S 2022 Phys. Rev. B 105 214418Google Scholar

    [41]

    Zhang Q, Xue J S, Sun Y T, Guo J J, Chen Y X, Tian Y F, Yan S S, Bai L H 2021 Phys. Rev. B 104 094303Google Scholar

    [42]

    Zhang D S, Song W J, Chai G Z 2017 J. Phys. D: Appl. Phys. 50 205003Google Scholar

    [43]

    An K, Kohno R, Litvinenko A N, Seeger R L, Naletov V V, Vila L, De Loubens G, Youssef J B, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2022 Phys. Rev. X 12 011060

    [44]

    Tserkovnyak Y, Brataas A, Bauer G E W, Halperin B I 2005 Rev. Mod. Phys. 77 1375Google Scholar

    [45]

    Ma K, Li C, Hao Z, Ong C K, Chai G 2023 Phys. Rev. B 108 094422Google Scholar

    [46]

    Zhan X X, Zhang Y, Yan X H, Xiao Y 2021 J. Appl. Phys. 130 123901Google Scholar

    [47]

    Mahan G D 2000 Many-Particle Physics (Kluwer Academic/Plenum Publishers

    [48]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [49]

    Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M Z, Yu H M 2018 Phys. Rev. Lett. 120 217202Google Scholar

  • 图 1  微波谐振腔(灰色长圆柱)与两个磁性层(棕色与蓝色圆盘)的器件模型 (a) 微波从外部源入射到谐振腔的左端口, 一部分反射, 另一部分进入腔内并形成驻波(黑色振荡曲线), 然后从右端口出射, 两个磁性层放在谐振腔的不同位置, 在外磁场下形成两个磁子模式, 这两个磁子模式通过相干型或耗散型耦合机制同时与谐振腔光子耦合, 从而在两个磁子模式之间形成间接的耦合作用(绿色虚线圆); (b)不同于(a), 两个磁性层放在一起, 除了谐振腔辅助的间接耦合作用(绿色虚线圆)之外, 两个磁子模式也通过界面交换耦合形成直接耦合作用(黄色实线圆)

    Fig. 1.  Schematic of devices containing microwave cavity (long grey cylinder) and two magnetic layers (brown and blue disks): (a) The microwave is fed to the input port of cavity and experiences reflection and transmission, the transmitted wave gives rise to standing wave inside the cavity due to multiple reflections, and then exits the output port of cavity. Two magnetic layers are placed at distinct positions of cavity and excite two magnon modes under external magnetic field and microwave driving, an indirect coupling of two magnon modes occurs (green dashed circle) due to simultaneous coherent/dissipative coupling of two magnon modes with the common cavity modes; (b) contrary to (a), two magnetic layers are placed together, the interface exchange coupling in the magnetic bilayer results in direct magnon-magnon coupling (yellow solid circle) besides the aforementioned indirect coupling (green dashed circle).

    图 2  单个磁子模式的微波透射谱和本征频率虚部, 纯的耗散型耦合($ G= -{\mathrm{i}}\varGamma $)的微波透射谱 (a) $ \varGamma $= 30 MHz, (b) $ \varGamma $= 60 MHz; 纯的相干型耦合($ G= g $)的微波透射谱 (c) $ g $= 30 MHz, (d) $ g $= 60 MHz; (e)—(h)分别给出了(a)—(d)对应的本征频率虚部与频率失谐$ {\varDelta }_{{\mathrm{mc}}} $的变化关系

    Fig. 2.  Microwave transmission spectra and imaginary parts of eigenfrequency for single magnon mode, microwave transmission spectra of pure dissipative coupling ($ G= -{\mathrm{i}}\varGamma $) with (a) $ \varGamma $= 30 MHz, (b) $ \varGamma $= 60 MHz; pure coherent coupling ($ G= g $) with (c) $ g $= 30 MHz, (d) $ g $= 60 MHz; (e)–(h) imaginary parts of eigenfrequency as function of detuning $ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $ for each coupling in (a)–(d)

    图 3  两个磁子模式的微波透射谱和本征频率虚部 (a)纯的相干型耦合($ G= g{= g}_{{\mathrm{a}}}{= g}_{{\mathrm{b}}} $)的微波透射谱, $ g $= 20 MHz; 纯的耗散型耦合($ G= -{\mathrm{i}}\varGamma = -{\mathrm{i}}{\varGamma }_{{\mathrm{a}}}= -{\mathrm{i}}{\varGamma }_{{\mathrm{b}}} $), (b) $ \varGamma $= 20 MHz, (c) $ \varGamma $= 45 MHz, 红色和蓝色虚线箭头给出了两个零阻尼点的位置; (d)—(f)为微波透射谱中零阻尼点的微波透射系数与频率失谐$ {\varDelta }_{{\mathrm{c}}} $的变化关系; (g)—(i) 分别给出了(a)—(c)对应的本征频率虚部与频率失谐$ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $的变化关系

    Fig. 3.  Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon modes with pure coupling: (a) Microwave transmission spectra of pure coherent coupling ($ G= g{= g}_{{\mathrm{a}}}{= g}_{{\mathrm{b}}} $) with $ g $= 20 MHz, and pure dissipative coupling ($ G= -{\mathrm{i}}\varGamma = -{\mathrm{i}}{\varGamma }_{{\mathrm{a}}}= -{\mathrm{i}}{\varGamma }_{{\mathrm{b}}} $) with (b) $ \varGamma $= 20 MHz and (c) $ \varGamma $= 45 MHz; red and blue dashed arrows denote the positions of two zero damping conditions; (d)–(f) microwave transmission as function of detuning $ {\varDelta }_{{\mathrm{c}}} $ at zero damping conditions; (g)–(i) imaginary parts of eigenfrequency as function of detuning $ {\varDelta }_{mc} $ for each coupling in (a)–(c).

    图 4  两个磁子模式在混合型耦合(相干型耦合和耗散型耦合同时存在)下的微波透射谱与本征频率虚部 (a)耦合强度$ G= (30-20{\mathrm{i}}) $ MHz, 耗散率$ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= {\kappa }_{{\mathrm{c}}}= 15 $ MHz; (b), (a)相同, 但是磁子耗散率$ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= $30 MHz; (c)耦合强度$ G= (30- $$ 30{\mathrm{i}}) $ MHz, 耗散率$ {\kappa }_{{\mathrm{c}}}= 15 $ MHz, $ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= $30 MHz; (d)—(f)微波透射谱中零阻尼点的微波透射系数与频率失谐$ {\varDelta }_{{\mathrm{c}}} $的变化关系; (g)—(i) 分别给出了(a)—(c)对应的本征频率虚部与频率失谐$ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $的变化关系

    Fig. 4.  Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon mode with both coherent and dissipative couplings present: (a) Coupling strength $ G= (30-20{\mathrm{i}}) $ MHz and damping rate $ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= {\kappa }_{{\mathrm{c}}}= 15 $ MHz; (b) the same as (a) but with $ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= $30 MHz; (c) coupling strength $ G= (30-30{\mathrm{i}}) $ MHz and damping rate $ {\kappa }_{{\mathrm{a}}}= {\kappa }_{{\mathrm{b}}}= 30 $ MHz and $ {\kappa }_{{\mathrm{c}}}= 15 $ MHz; (d)–(f) microwave transmission as function of detuning $ {\varDelta }_{{\mathrm{c}}} $ at zero damping conditions; (g)–(i) imaginary parts of eigenfrequency as function of detuning $ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $ for each coupling in (a)–(c).

    图 5  两个磁子模式在不同层间耦合强度下的微波透射谱与本征频率虚部 (a) $ {g}_{{\mathrm{a}}{\mathrm{b}}}= $ 100 MHz, (b) $ {g}_{{\mathrm{a}}{\mathrm{b}}}= $ 200 MHz, 耦合强度均为$ G= (30-30{\mathrm{i}}) $ MHz; (c), (d)为微波透射谱中零阻尼点的微波透射系数与频率失谐$ {\varDelta }_{{\mathrm{c}}} $的变化关系; (e), (f) 分别给出了(a), (b)对应的本征频率虚部与频率失谐$ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $的变化关系, 绿色曲线代表$ {g}_{{\mathrm{a}}{\mathrm{b}}}= 0 $的结果

    Fig. 5.  Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon mode with interlay coupling present: (a) Interlayer coupling strength $ {g}_{{\mathrm{a}}{\mathrm{b}}}= $ 100 MHz, (b) $ {g}_{{\mathrm{a}}{\mathrm{b}}}= $ 200 MHz, photon-magnon coupling strength is $ G= (30-30{\mathrm{i}}) $ MHz; (c), (d) microwave transmission as function of detuning $ {\varDelta }_{{\mathrm{c}}} $ at zero damping conditions; (e), (f) imaginary parts of eigenfrequency as function of detuning $ {\varDelta }_{{\mathrm{m}}{\mathrm{c}}} $ for each coupling in (a), (b), the green curves represent the results of $ {g}_{{\mathrm{a}}{\mathrm{b}}}= 0 $.

  • [1]

    Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [2]

    Soykal O O, Flatt´e M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [3]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [4]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [5]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [6]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [7]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [8]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [9]

    Bernier N R, T´oth L D, Feofanov A K, Kippenberg T J 2018 Phys. Rev. A 98 023841Google Scholar

    [10]

    Yu W C, Wang J J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [11]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [12]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022 Chin. Phys. B 31 127503Google Scholar

    [13]

    Bao X X, Guo G F, Yang X, Tan L 2023 Chin. Phys. B 32 080301Google Scholar

    [14]

    Liao Q, Peng K, Qiu H 2023 Chin. Phys. B 32 054205Google Scholar

    [15]

    Liu T, Zhang X, Tang H X, Flatte M E 2016 Phys. Rev. B 94 060405(RGoogle Scholar

    [16]

    Zare R B, Viola K S, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E, Blanter Y M 2022 Phys. Rep. 979 1Google Scholar

    [17]

    Harder M, Yao B, Gui Y, Hu C M 2021 J. Appl. Phys. 129 201101Google Scholar

    [18]

    Yuan H, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [19]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Exp. 12 070101Google Scholar

    [20]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [21]

    Pan H, Yang Y, An Z H, Hu C M 2022 Phys. Rev. B 106 054425Google Scholar

    [22]

    Hyde P, Yao B M, Gui Y S, Zhang G Q, You J Q, Hu C M 2018 Phys. Rev. B 98 174423Google Scholar

    [23]

    Bi M X, Yan X H, Xiao Y, Dai C J 2019 J. Appl. Phys. 126 173902Google Scholar

    [24]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411Google Scholar

    [25]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [26]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403Google Scholar

    [27]

    Hei X L, Li P B, Pan X F, Nor F 2023 Phys. Rev. Lett. 130 073602Google Scholar

    [28]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [29]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [30]

    Yang J Y, Zhao C S, Wang D W, Peng R, Zhou L 2024 Phys. Rev. Appl. 21 044056Google Scholar

    [31]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 127 087203Google Scholar

    [32]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [33]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602Google Scholar

    [34]

    Zhang X F, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [35]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [36]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [37]

    Yang Y, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2019 Phys. Rev. Appl. 11 054023Google Scholar

    [38]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [39]

    Zhang X F, Zou C, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [40]

    Nair J M P, Mukhopadhyay D, Agarwal G S 2022 Phys. Rev. B 105 214418Google Scholar

    [41]

    Zhang Q, Xue J S, Sun Y T, Guo J J, Chen Y X, Tian Y F, Yan S S, Bai L H 2021 Phys. Rev. B 104 094303Google Scholar

    [42]

    Zhang D S, Song W J, Chai G Z 2017 J. Phys. D: Appl. Phys. 50 205003Google Scholar

    [43]

    An K, Kohno R, Litvinenko A N, Seeger R L, Naletov V V, Vila L, De Loubens G, Youssef J B, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2022 Phys. Rev. X 12 011060

    [44]

    Tserkovnyak Y, Brataas A, Bauer G E W, Halperin B I 2005 Rev. Mod. Phys. 77 1375Google Scholar

    [45]

    Ma K, Li C, Hao Z, Ong C K, Chai G 2023 Phys. Rev. B 108 094422Google Scholar

    [46]

    Zhan X X, Zhang Y, Yan X H, Xiao Y 2021 J. Appl. Phys. 130 123901Google Scholar

    [47]

    Mahan G D 2000 Many-Particle Physics (Kluwer Academic/Plenum Publishers

    [48]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [49]

    Chen J L, Liu C P, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M Z, Yu H M 2018 Phys. Rev. Lett. 120 217202Google Scholar

  • [1] 徐明慧, 刘晓敏, 史佳佳, 张冲, 张静, 杨荣国, 郜江瑞. 微波-声子与光-磁纠缠态的产生. 物理学报, 2025, 74(5): 054202. doi: 10.7498/aps.74.20241664
    [2] 陈志坚, 赵恺欣, 王辰笑, 魏纯可, 姚碧. 光诱导磁子态调控的宽频带非互易传输. 物理学报, 2025, 74(8): . doi: 10.7498/aps.74.20241666
    [3] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [4] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [5] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [6] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [7] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] 张良英, 曹力, 吴大进. 周期外力对频率涨落的过阻尼谐振子所作的功和能量随机共振. 物理学报, 2013, 62(19): 190502. doi: 10.7498/aps.62.190502
    [9] 陆志新, 曹力. 输入方波信号的过阻尼谐振子的随机共振. 物理学报, 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [10] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [11] 张莉, 刘立, 曹力. 过阻尼谐振子的随机共振. 物理学报, 2010, 59(3): 1494-1498. doi: 10.7498/aps.59.1494
    [12] 李正红, 孟凡宝, 常安碧, 胡克松. 利用场耦合理论研究开放微波谐振腔. 物理学报, 2004, 53(11): 3627-3631. doi: 10.7498/aps.53.3627
    [13] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响. 物理学报, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [14] 凌瑞良. 含时阻尼谐振子的传播子与严格波函数. 物理学报, 2001, 50(8): 1421-1424. doi: 10.7498/aps.50.1421
    [15] 凌瑞良, 冯金福. 阻尼谐振子的严格波函数. 物理学报, 1998, 47(12): 1952-1956. doi: 10.7498/aps.47.1952
    [16] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅱ). 物理学报, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [17] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅰ). 物理学报, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
    [18] 李强法, 徐承和. 缓变截面波导开放谐振腔的微波网络分析. 物理学报, 1981, 30(7): 936-944. doi: 10.7498/aps.30.936
    [19] 彭桓武. 阻尼谐振子的量子力学处理. 物理学报, 1980, 29(8): 1084-1089. doi: 10.7498/aps.29.1084
    [20] 方洪烈. 多元件谐振腔的正则描述. 物理学报, 1979, 28(3): 430-434. doi: 10.7498/aps.28.430
计量
  • 文章访问数:  449
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 修回日期:  2025-01-07
  • 上网日期:  2025-01-14
  • 刊出日期:  2025-03-05

/

返回文章
返回