搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多维碳基导热增强微胶囊相变复合材料制备及热性能调控

贺晨波 汪子涵 唐桂华 孙晶晶 孙陈诚 李俊宁 王晓艳

引用本文:
Citation:

多维碳基导热增强微胶囊相变复合材料制备及热性能调控

贺晨波, 汪子涵, 唐桂华, 孙晶晶, 孙陈诚, 李俊宁, 王晓艳
cstr: 32037.14.aps.74.20241731

Preparation and thermal performance tuning of multidimensional carbon-based microcapsule phase change composites

HE Chenbo, WANG Zihan, TANG Guihua, SUN Jingjing, SUN Chencheng, LI Junning, WANG Xiaoyan
cstr: 32037.14.aps.74.20241731
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为满足航天器热管理材料对高导热和高储/释热性能的双重需求, 本文采用热压成型工艺制备了一种多维碳基导热增强微胶囊相变复合材料, 以解决传统相变材料热导率低和液态泄漏的问题. 基于实验测试和有限元数值模拟, 系统研究了不同组分的含量与配比对相变复合材料热性能的影响机理, 揭示了材料内部多维导热网络的形成机制. 结果表明, 采用多维导热材料协同掺杂与多尺度鳞片石墨复合填充策略, 构建了兼具连通性和致密性的多维碳基导热网络, 其产生的协同导热增强效应显著提升了微胶囊相变复合材料的热导率(1.021 W/(m·K)), 同时保持了高储热性能(81.540 J/g), 为航天器热管理材料的设计和应用提供了支撑.
    In order to meet the requirements for both high thermal conductivity and large latent heat storage and release of thermal management materials for spacecraft, a multidimensional carbon-based, thermally enhanced microencapsulated phase change composite is prepared by using a hot-pressing technique in this work. This method solves the limitations of traditional phase change materials, which suffer from low thermal conductivity and a propensity for liquid leakage. The effects of different content values and ratios of microencapsulated phase change materials, flake graphite, and pitch-based carbon fibers on the composite’s thermal properties, specifically thermal conductivity and latent heat are systematically investigated by integrating experimental assessments with finite element numerical simulations. Furthermore, the mechanism for forming an internal multidimensional heat conduction network is elucidated.These results indicate that introducing multidimensional thermally conductive materials into the microencapsulated phase change system, can establish a continuous and dense multidimensional carbon-based conduction network through optimizing component composition and structure. Using the synergistic effects of these conductive materials and a multi-size flake graphite filling strategy, the overall thermal conductivity of the composite is significantly enhanced, reaching 1.021 W/(m·K), while maintaining a high latent heat of 81.540 J/g. These findings provide theoretical and practical guidance for optimizing and applying advanced thermal management materials to spacecraft.
      通信作者: 唐桂华, ghtang@mail.xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFC2204302)和国家自然科学基金(批准号: 52130604)资助的课题.
      Corresponding author: TANG Guihua, ghtang@mail.xjtu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2022YFC2204302) and the National Natural Science Foundation of China (Grant No. 52130604).
    [1]

    李心泽, 唐桂华, 汪子涵, 冯建朝, 张晓峰 2024 物理学报 73 184401Google Scholar

    Li X Z, Tang G H, Wang Z H, Feng J C, Zhang X F 2024 Acta Phys. Sin. 73 184401Google Scholar

    [2]

    Wang Z H, He C B, Hu Y, Tang G H 2024 Sci. China Tech. Sci. 67 2387Google Scholar

    [3]

    Drissi S, Ling T C, Mo K H 2019 Thermochim Acta 673 198Google Scholar

    [4]

    Wu W F, Liu N, Cheng W L, Liu Y 2013 Energy Convers. Manag. 69 174Google Scholar

    [5]

    Kong Q Q, Jia H, Xie L J, Tao Z C, Yang X, Liu D, Sun G H, Guo Q G, Lu C X, Chen C M 2021 Compos. Part A 145 106391Google Scholar

    [6]

    Velez C, Ortiz de Zarate J M, Khayet M 2015 Int. J. Therm. Sci. 94 139Google Scholar

    [7]

    Haddad Z, Buonomo B, Abu-Nada E, Manca O 2024 Renew. Sustain. Energy Rev. 205 114826Google Scholar

    [8]

    Chang Z, Wang K, Wu X H, Lei G, Wang Q, Liu H, Wang Y L, Zhang Q 2022 J. Energy Storage 46 103840Google Scholar

    [9]

    Xu R, Xia X M, Wang W, Yu D 2020 Colloids Surf. A 591 124519Google Scholar

    [10]

    Wang X T, Chen H X, Kuang D L, Huan X, Zeng Z Y, Qi C, Han S J, Li G Y 2024 Compos. Sci. Technol. 257 110836Google Scholar

    [11]

    Zhang D F, Cai T Y, Li Y J, Li Y S, He F F, Chen Z G, Zhu L Q, He C D, Yang W B 2022 ChemistrySelect 7 e202202930Google Scholar

    [12]

    Wu X H, Gao M T, Wang K, Wang Q W, Cheng C X, Zhu Y J, Zhang F F, Zhang Q 2021 J. Energy Storage 36 102398Google Scholar

    [13]

    Lu X T, Qian R D, Xu X Y, Liu M, Liu Y F, Zou D Q 2024 Nano Energy 124 109520Google Scholar

    [14]

    童叶龙, 陶则超, 李一凡, 刘占军, 江利锋, 殷亚州 2022 中国空间科学技术 42 131Google Scholar

    Tong Y L, Tao Z C, Li Y F, Liu Z J, Jiang L F, Yin Y Z 2022 Chinese Space Sci. Technol. 42 131Google Scholar

    [15]

    Dubey A K, Sun J, Choudhary T, Dash M, Rakshit D, Ansari M Z, Ramakrishna S, Liu Y, Nanda H S 2023 Renew. Sustain. Energy Rev. 182 113421Google Scholar

    [16]

    Li S Y, Yan T, Pan W G 2024 Cell Rep. Phys. Sci. 5 102046Google Scholar

    [17]

    Xia Y P, Zhang H Z, Huang P R, Huang C W, Xu F, Zou Y J, Chu H L, Yan E H, Sun L X 2019 Chem. Eng. J. 362 909Google Scholar

    [18]

    Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T 2015 Appl. Energy 154 678Google Scholar

    [19]

    Cheng P, Chen X, Gao H Y, Zhang X W, Tang Z D, Li A, Wang G 2021 Nano Energy 85 105948Google Scholar

    [20]

    Yang M S, Li X Y, Chen W Q 2024 Appl. Energy 371 123726Google Scholar

    [21]

    Prieto R, Molina J M, Narciso J, Louis E 2011 Compos. Part A 42 1970Google Scholar

    [22]

    Zhang H M, Chao M J, Zhang H S, Tang A, Ren B, He X B 2014 Appl. Therm. Eng. 73 739Google Scholar

    [23]

    Tian W L, Qi L H, Chao X J, Liang J H, Fu M W 2019 Compos. Part B 162 1Google Scholar

    [24]

    Xu J Z, Gao B Z, Du H D, Kang F Y 2016 Int. J. Therm. Sci. 104 348Google Scholar

    [25]

    Xu J Z, Gao B Z, Kang F Y 2016 Appl. Therm. Eng. 102 972Google Scholar

    [26]

    Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362Google Scholar

    [27]

    Yan X W, Xie Y, Fang Q Z, Hu Y, Xin Q Q 2024 Int. Commun. Heat Mass Transf. 159 108018Google Scholar

    [28]

    Cernuschi F, Kulczyk-Malecka J, Zhang X, Nozahic F, Estournès C, Sloof W G 2023 J. Eur. Ceram. Soc. 43 6296Google Scholar

  • 图 1  多维碳基导热增强微胶囊相变复合材料制备流程图

    Fig. 1.  Flowchart of the preparation process for multidimensional carbon-based thermally enhanced microcapsule phase change composite.

    图 2  多维碳基导热增强微胶囊相变复合材料RVE模型示意图

    Fig. 2.  Schematic diagram of the RVE model for multidimensional carbon-based thermally enhanced microcapsule phase change composite.

    图 3  多维碳基导热增强微胶囊相变复合材料的扫描电子显微镜图 (a) PCMC; (b) FG骨架结构; (c) PCF掺杂相变复合材料

    Fig. 3.  Scanning electron micrograph of multidimensional carbon-based thermally enhanced microcapsule phase change composite: (a) PCMC; (b) FG skeleton structure; (c) PCF-doped phase change composite.

    图 4  不同PCMC含量相变复合材料的DSC图

    Fig. 4.  DSC curves of phase change composites with different PCMC contents.

    图 5  不同PCMC含量相变复合材料的热性能

    Fig. 5.  Thermal performance of phase change composites with different PCMC contents.

    图 6  多维碳基导热增强微胶囊相变复合材料的热传导有限元分析 (a)含PCF的RVE温度分布; (b)未含PCF的RVE温度分布; (c)含PCF的RVE热流密度分布; (d)未含PCF的RVE热流密度分布

    Fig. 6.  Finite element analysis of thermal conductivity for multidimensional carbon-based thermally enhanced microcapsule phase change composites: (a) Temperature distribution of RVE with PCF; (b) temperature distribution of RVE without PCF; (c) heat flux distribution of RVE with PCF; (d) heat flux distribution of RVE without PCF.

    图 7  Sample 1—12中不同尺寸FG的混合比例

    Fig. 7.  Mixing ratios of FG with different sizes in Samples 1–12.

    图 8  不同尺度FG混合比例的相变复合材料的热性能

    Fig. 8.  Thermal performance of phase change composites with different FG size ratios.

    图 9  不同FG混合比例相变复合材料RVE模型的热流密度分布图

    Fig. 9.  Heat flux distribution of RVE models for phase change composites with different FG size ratios.

    图 10  不同冷热循环次数下相变复合材料的形态与泄漏情况

    Fig. 10.  Morphology and leakage behavior of phase change composites under different thermal cyclings.

    图 11  不同冷热循环次数下相变复合材料的热性能 (a)热导率; (b)相变焓值

    Fig. 11.  Thermal performance of phase change composites under different thermal cyclings: (a) Thermal conductivity; (b) phase change enthalpy.

    表 1  相变复合材料各组分材料的质量分数

    Table 1.  Mass fractions of each component in the phase change composites.

    Sample 10 μm FG/% 50 μm FG/% 100 μm FG/% PCMC/% PCF/%
    1 4.25 4.25 16.50 70.00 5.00
    2 4.25 8.25 12.50 70.00 5.00
    3 4.25 12.50 8.25 70.00 5.00
    4 8.25 4.25 12.50 70.00 5.00
    5 8.25 8.25 8.50 70.00 5.00
    6 8.25 12.50 4.25 70.00 5.00
    7 12.50 4.25 8.25 70.00 5.00
    8 12.50 8.25 4.25 70.00 5.00
    9 12.50 12.50 0.00 70.00 5.00
    10 25.00 0.00 0.00 70.00 5.00
    11 0.00 25.00 0.00 70.00 5.00
    12 0.00 0.00 25.00 70.00 5.00
    13 4.95 4.95 5.10 80.00 5.00
    14 1.65 1.65 1.70 90.00 5.00
    15 9.90 9.90 10.20 70.00 0.00
    下载: 导出CSV

    表 2  含PCF与未含PCF相变复合材料的热性能比较

    Table 2.  Comparison of thermal performance between PCF-containing and PCF-free phase change composites.

    Sample PCF/% λ/(W·m–1·K–1) ΔH/(J·g–1)
    5 5 0.887 81.282
    15 0 0.350 80.241
    下载: 导出CSV
  • [1]

    李心泽, 唐桂华, 汪子涵, 冯建朝, 张晓峰 2024 物理学报 73 184401Google Scholar

    Li X Z, Tang G H, Wang Z H, Feng J C, Zhang X F 2024 Acta Phys. Sin. 73 184401Google Scholar

    [2]

    Wang Z H, He C B, Hu Y, Tang G H 2024 Sci. China Tech. Sci. 67 2387Google Scholar

    [3]

    Drissi S, Ling T C, Mo K H 2019 Thermochim Acta 673 198Google Scholar

    [4]

    Wu W F, Liu N, Cheng W L, Liu Y 2013 Energy Convers. Manag. 69 174Google Scholar

    [5]

    Kong Q Q, Jia H, Xie L J, Tao Z C, Yang X, Liu D, Sun G H, Guo Q G, Lu C X, Chen C M 2021 Compos. Part A 145 106391Google Scholar

    [6]

    Velez C, Ortiz de Zarate J M, Khayet M 2015 Int. J. Therm. Sci. 94 139Google Scholar

    [7]

    Haddad Z, Buonomo B, Abu-Nada E, Manca O 2024 Renew. Sustain. Energy Rev. 205 114826Google Scholar

    [8]

    Chang Z, Wang K, Wu X H, Lei G, Wang Q, Liu H, Wang Y L, Zhang Q 2022 J. Energy Storage 46 103840Google Scholar

    [9]

    Xu R, Xia X M, Wang W, Yu D 2020 Colloids Surf. A 591 124519Google Scholar

    [10]

    Wang X T, Chen H X, Kuang D L, Huan X, Zeng Z Y, Qi C, Han S J, Li G Y 2024 Compos. Sci. Technol. 257 110836Google Scholar

    [11]

    Zhang D F, Cai T Y, Li Y J, Li Y S, He F F, Chen Z G, Zhu L Q, He C D, Yang W B 2022 ChemistrySelect 7 e202202930Google Scholar

    [12]

    Wu X H, Gao M T, Wang K, Wang Q W, Cheng C X, Zhu Y J, Zhang F F, Zhang Q 2021 J. Energy Storage 36 102398Google Scholar

    [13]

    Lu X T, Qian R D, Xu X Y, Liu M, Liu Y F, Zou D Q 2024 Nano Energy 124 109520Google Scholar

    [14]

    童叶龙, 陶则超, 李一凡, 刘占军, 江利锋, 殷亚州 2022 中国空间科学技术 42 131Google Scholar

    Tong Y L, Tao Z C, Li Y F, Liu Z J, Jiang L F, Yin Y Z 2022 Chinese Space Sci. Technol. 42 131Google Scholar

    [15]

    Dubey A K, Sun J, Choudhary T, Dash M, Rakshit D, Ansari M Z, Ramakrishna S, Liu Y, Nanda H S 2023 Renew. Sustain. Energy Rev. 182 113421Google Scholar

    [16]

    Li S Y, Yan T, Pan W G 2024 Cell Rep. Phys. Sci. 5 102046Google Scholar

    [17]

    Xia Y P, Zhang H Z, Huang P R, Huang C W, Xu F, Zou Y J, Chu H L, Yan E H, Sun L X 2019 Chem. Eng. J. 362 909Google Scholar

    [18]

    Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T 2015 Appl. Energy 154 678Google Scholar

    [19]

    Cheng P, Chen X, Gao H Y, Zhang X W, Tang Z D, Li A, Wang G 2021 Nano Energy 85 105948Google Scholar

    [20]

    Yang M S, Li X Y, Chen W Q 2024 Appl. Energy 371 123726Google Scholar

    [21]

    Prieto R, Molina J M, Narciso J, Louis E 2011 Compos. Part A 42 1970Google Scholar

    [22]

    Zhang H M, Chao M J, Zhang H S, Tang A, Ren B, He X B 2014 Appl. Therm. Eng. 73 739Google Scholar

    [23]

    Tian W L, Qi L H, Chao X J, Liang J H, Fu M W 2019 Compos. Part B 162 1Google Scholar

    [24]

    Xu J Z, Gao B Z, Du H D, Kang F Y 2016 Int. J. Therm. Sci. 104 348Google Scholar

    [25]

    Xu J Z, Gao B Z, Kang F Y 2016 Appl. Therm. Eng. 102 972Google Scholar

    [26]

    Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362Google Scholar

    [27]

    Yan X W, Xie Y, Fang Q Z, Hu Y, Xin Q Q 2024 Int. Commun. Heat Mass Transf. 159 108018Google Scholar

    [28]

    Cernuschi F, Kulczyk-Malecka J, Zhang X, Nozahic F, Estournès C, Sloof W G 2023 J. Eur. Ceram. Soc. 43 6296Google Scholar

  • [1] 郭义丰, 王智彬, 贾莉斯, 莫松平, 陈颖. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟. 物理学报, 2023, 72(10): 106501. doi: 10.7498/aps.72.20222400
    [2] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [3] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [5] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展. 物理学报, 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [6] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [7] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [8] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [9] 原青云, 王松. 一种新的航天器外露介质充电模型. 物理学报, 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [10] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数. 物理学报, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [11] 孔新雷, 吴惠彬. Birkhoff系统的离散最优控制及其在航天器交会对接中的应用. 物理学报, 2017, 66(8): 084501. doi: 10.7498/aps.66.084501
    [12] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制. 物理学报, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [13] 秦利, 刘福才, 梁利环, 侯甜甜. 基于液体晃动干扰观测器的航天器混沌姿态H∞控制. 物理学报, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [14] 戴龙泽, 刘希琴, 刘子利, 丁丁. 乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算. 物理学报, 2013, 62(22): 222401. doi: 10.7498/aps.62.222401
    [15] 贾飞蕾, 徐伟, 李恒年, 侯黎强. 受扰航天器姿态动力学中参数未知的混沌运动控制. 物理学报, 2013, 62(10): 100503. doi: 10.7498/aps.62.100503
    [16] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 航天器内部孤立导体表面带电面积效应研究. 物理学报, 2013, 62(14): 149402. doi: 10.7498/aps.62.149402
    [17] 严雄伟, 於海武, 郑建刚, 李明中, 蒋新颖, 段文涛, 曹丁象, 王明哲, 单小童, 张永亮. 梯度掺杂Yb ∶YAG重频激光器热管理研究. 物理学报, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [18] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析. 物理学报, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [19] 张国英, 张 辉, 魏 丹, 何君琦. 碳纳米管增强铝基复合材料电子理论研究. 物理学报, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [20] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型. 物理学报, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
计量
  • 文章访问数:  304
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 修回日期:  2025-02-01
  • 上网日期:  2025-02-17
  • 刊出日期:  2025-04-05

/

返回文章
返回