搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个自旋-1/2原子的自旋交换

潘泽明 谭乃铭 高超 姚治海 王晓茜

引用本文:
Citation:

两个自旋-1/2原子的自旋交换

潘泽明, 谭乃铭, 高超, 姚治海, 王晓茜
cstr: 32037.14.aps.74.20241781

Spin exchange of two spin-1/2 atoms

PAN Zeming, TAN Naiming, GAO Chao, YAO Zhihai, WANG Xiaoqian
cstr: 32037.14.aps.74.20241781
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子柴郡猫效应是量子力学中的一种重要现象, 它揭示物理属性与载体的可分离性, 突破了经典物理中属性必须依附于物体的固有框架, 为量子信息与量子精密测量提供了新视角. 本文基于量子柴郡猫效应, 通过前选择过程制备了一个由两个粒子组成的自旋-1/2原子系统的前选态. 对这些粒子的自旋和位置进行了量子弱测量, 并随后实施了策略性的后选择. 在后选择过程中, 设计了两个不同的后选态. 完成弱测量的粒子会沿着不同的路径演化, 最终达到不同的后选态. 最终测量结果表明, 其中一个后选态导致两个粒子的自旋发生了交换并得到了放大; 而另一个后选态则使得两个粒子即使经历了弱测量, 但状态仍然与测量前保持一致. 本研究从理论上证实了费米子系统在两体量子柴郡猫效应中的可行性, 并展示了延迟选择如何影响自旋-1/2原子系统的量子柴郡猫效应.
    The quantum Cheshire cat effect is an important phenomenon in quantum mechanics that reveals the separability of physical properties from their carriers. This effect transcends the classical framework whose attributes must be inherently attached to objects, providing new perspectives for quantum information and precision measurement. According to the quantum Cheshire cat effect, we prepare a pre-selected state of a spin-1/2 atomic system composed of two particles through a pre-selection process. We conduct quantum weak measurements on the spins and positions of these two atoms and extract weak values by using the method of imaginary time evolution (ITE). Subsequently, we perform post-selection on these two atoms and design two distinct post-selected states. Initially, we calculate analytical solutions when both atoms encounter these two different post-selected states separately. Then, during the stage of obtaining weak values via ITE, we first discuss the scenario with only one post-selected state. In this case, our experimental goal is to achieve spin exchange between the two atoms. We use ITE to obtain normalized coincidence rate for the system. By linearly fitting these normalized coincidence rate, we derive numerical solutions for the weak values of the system. The comparison between the analytical solutions and numerical results indicates that they are in close agreement, demonstrating that our method promotes spin exchange between the two atoms. Next, we examine scenarios involving both post-selected states in the post-selection process. After completing weak measurements on particles, delayed-choice allows them to evolve along different paths ultimately leading to distinct post-selected states. One particular post-selected state that results in final measurement outcomes indicates that the spin exchange occurs between both particles with amplification. Conversely, the other post-selected state ensures that even after undergoing weak measurement and delayed-choice, the states of the two particles remain consistent with their pre-measurement conditions. We also compare the analytical and numerical solutions of the experiment involving delayed choice and find that they are very consistent with each other. This consistency indicates that delayed-choice indeed has a significant influence on whether the final exchange occurs. Our research theoretically confirms the feasibility of fermionic systems within bipartite quantum Cheshire cat effects and illustrates how delayed-choice influences quantum Cheshire cat effects in spin-1/2 atomic systems.
      通信作者: 王晓茜, xqwang21@163.com
    • 基金项目: 吉林省基础研究计划基金(批准号: YDZJ202101ZYTS030)资助的课题.
      Corresponding author: WANG Xiaoqian, xqwang21@163.com
    • Funds: Project supported by the Jilin Provincial Research Foundation for Basic Research, China (Grant No. YDZJ202101ZYTS030).
    [1]

    Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15 113015Google Scholar

    [2]

    Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 5 4492Google Scholar

    [3]

    Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 7 14Google Scholar

    [4]

    Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 7 13Google Scholar

    [5]

    Das D, Sen U 2021 Phys. Rev. A 103 012228Google Scholar

    [6]

    Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 2018 7060586Google Scholar

    [7]

    Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 12 18Google Scholar

    [8]

    Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 13 3865Google Scholar

    [9]

    Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107 052214Google Scholar

    [10]

    Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26 073038Google Scholar

    [11]

    Das D, Pati A K 2020 New J. Phys. 22 063032Google Scholar

    [12]

    Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 11 3006Google Scholar

    [13]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [14]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [15]

    Bloch I, Zoller P 2006 New J. Phys. 8 E02Google Scholar

    [16]

    Puentes G 2015 J. Phys. B. 48 245301Google Scholar

    [17]

    Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131 110602Google Scholar

    [18]

    Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410Google Scholar

    [19]

    Wheeler J A 1978 Mathematical Foundations of Quantum Theory (Amsterdam: Elsevier) pp9–48

    [20]

    Witten E 2018 Rev. Mod. Phys. 90 045003Google Scholar

    [21]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517Google Scholar

    [22]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [23]

    Wick G C 1954 Phys. Rev. 96 1124Google Scholar

    [24]

    Landsman N, van Weert C 1987 Phys. Rep. 145 141Google Scholar

    [25]

    Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 7 13194Google Scholar

    [26]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

  • 图 1  自旋-1/2原子自旋交换及自旋放大原理示意图. 在前选择部分, 制备出符合理论预期的前选态$ |i\rangle $. 在弱测量(WM)部分, 分束器(BS)将两个原子分束, 两个原子分束后进入位置密度处理器(LD)与自旋灵敏密度处理器(SD)中. 在后选择部分, 两个原子通过一个由1与0控制的随机开关同步进行选择, 确保两个原子同时随机获取其中一种后选态. 两个原子通过BS后, 将通过下路径的原子称为原子1, 以黄色表示; 将通过上路径的原子称为原子2, 以蓝色表示. 完成弱测量后, 用浅绿色表示原子1, 深绿色表示原子2

    Fig. 1.  Schematic diagram of spin-1/2 atomic spin exchange and spin amplification principle In the pre-selection section, prepare a pre-selected state $ |i\rangle $that meets theoretical expectations. In the weak measurement (WM) section, the beam splitter (BS) splits two atoms into beams, which then enter the position density processor (LD) and spin-sensitive density processor (SD). In the post-selection section, two atoms will select synchronlusly through a random switch controlled by 1 and 0, ensuring two atoms simultaneously randomly obtain one of the post-selected states. After two atoms pass through BS, the atom passing through the downward path is called atom-1, represented in yellow; the atom passing through the upper path is called atom-2, represented in blue. After completing the weak measurement, use light green to represent atom-1 and dark green to represent atom-2.

    图 2  归一化符合率N(t)随tα的变化趋势. 图中t的取值范围为0—1, α取值范围为0—$ {\pi}/{2} $

    Fig. 2.  Trend of normalized coincidence rate N(t) as a function of t and α. The value range of t in the figure is from 0 to 1, and the value range of α in the figure is from 0 to $ {\pi}/{2} $.

    图 3  α取$ {\pi}/{4} $时, 两个原子的归一化符合率N(t)随t的变化趋势. 左图为原子1的数据, 右图为原子2的数据. 因N(t)与t存在函数关系, 所以此处直接用弱值符号代表相关可观测量的N(t)

    Fig. 3.  When α takes $ {\pi}/{4} $, the normalized coincidence rate N(t) of two atoms varies with t. The left image shows the data for atom-1, and the right image shows the data for atom-2. Due to the functional relationship between N(t) and t, weak values are directly used here to represent the N(t) of the relevant observables.

    图 4  加入延迟选择后系统的ITE图像. 因系统会获得两种不同的后选态, 演化后系统中每个原子与自旋相关的归一化符合率会产生差异

    Fig. 4.  Add ITE images to the system after delay selection. The system will obtain two different post selected states, and the normalized coincidence rate of each atom with spin in the evolved system will vary.

  • [1]

    Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P 2013 New J. Phys. 15 113015Google Scholar

    [2]

    Denkmayr T, Geppert H, Sponar S, Lemmel H, Matzkin A, Tollaksen J, Hasegawa Y 2014 Nat. Commun. 5 4492Google Scholar

    [3]

    Danner A, Geerits N, Lemmel H, Wagner R, Sponar S, Hasegawa Y 2024 Commun. Phys. 7 14Google Scholar

    [4]

    Kim Y, Im D G, Kim Y S, Han S W, Moon S, Kim Y H, Cho Y W 2021 npj. Quantum. Inf. 7 13Google Scholar

    [5]

    Das D, Sen U 2021 Phys. Rev. A 103 012228Google Scholar

    [6]

    Richter M, Dziewit B, Dajka J 2018 Adv. Math. Phys. 2018 7060586Google Scholar

    [7]

    Li J K, Sun K, Wang Y, Hao Z Y, Liu Z H, Zhou J, Fan X Y, Chen J L, Xu J S, Li C F, Guo G C 2023 Light Sci. Appl. 12 18Google Scholar

    [8]

    Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y 2023 Sci. Rep. 13 3865Google Scholar

    [9]

    Ghoshal A, Sau S, Das D, Sen U 2023 Phys. Rev. A 107 052214Google Scholar

    [10]

    Hance J R, Ladyman J, Rarity J 2024 New J. Phys. 26 073038Google Scholar

    [11]

    Das D, Pati A K 2020 New J. Phys. 22 063032Google Scholar

    [12]

    Liu Z H, Pan W W, Xu X Y, Yang M, Zhou J, Luo Z Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2020 Nat. Commun. 11 3006Google Scholar

    [13]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [14]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [15]

    Bloch I, Zoller P 2006 New J. Phys. 8 E02Google Scholar

    [16]

    Puentes G 2015 J. Phys. B. 48 245301Google Scholar

    [17]

    Mao Y, Chaudhary M, Kondappan M, Shi J, Ilo-Okeke E O, Ivannikov V, Byrnes T 2023 Phys. Rev. Lett. 131 110602Google Scholar

    [18]

    Aharonov Y, Bergmann P G, Lebowitz J L 1964 Phys. Rev. 134 B1410Google Scholar

    [19]

    Wheeler J A 1978 Mathematical Foundations of Quantum Theory (Amsterdam: Elsevier) pp9–48

    [20]

    Witten E 2018 Rev. Mod. Phys. 90 045003Google Scholar

    [21]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517Google Scholar

    [22]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [23]

    Wick G C 1954 Phys. Rev. 96 1124Google Scholar

    [24]

    Landsman N, van Weert C 1987 Phys. Rep. 145 141Google Scholar

    [25]

    Xu J S, Sun K, Han Y J, Li C F, Pachos J K, Guo G C 2016 Nat. Commun. 7 13194Google Scholar

    [26]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋. 基于DNA编码与交替量子随机行走的彩色图像加密算法. 物理学报, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [3] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [4] 李保民, 胡明亮, 范桁. 量子相干. 物理学报, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [5] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [6] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [7] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [8] 李卓, 邢莉娟. 差错基、量子码与群代数. 物理学报, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [9] 王云江, 白宝明, 彭进业, 王新梅. 针对X-Z型Pauli信道的量子稀疏图码的反馈式和积译码算法. 物理学报, 2011, 60(3): 030306. doi: 10.7498/aps.60.030306
    [10] 邢莉娟, 李卓, 张武军. 加强的量子汉明限. 物理学报, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [11] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [12] 姜福仕, 赵翠兰. 量子环中量子比特的声子效应. 物理学报, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [13] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] 邢莉娟, 李 卓, 白宝明, 王新梅. 量子卷积码的编译码方法. 物理学报, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [15] 李 卓, 邢莉娟. 量子Generalized Reed-Solomon码. 物理学报, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [16] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [17] 李 卓, 邢莉娟. 一类基于级联结构的量子好码. 物理学报, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [18] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [19] 张权, 张尔扬. 非对称二状态量子密钥分配协议最优参量研究. 物理学报, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [20] 张权, 唐朝京, 高峰. 量子Turbo码. 物理学报, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
计量
  • 文章访问数:  473
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-26
  • 修回日期:  2025-02-24
  • 上网日期:  2025-03-13
  • 刊出日期:  2025-05-20

/

返回文章
返回