搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子-光子相互作用下耗散光腔中的量子相变和奇异点

刘妮 罗芸青 梁九卿

引用本文:
Citation:

原子-光子相互作用下耗散光腔中的量子相变和奇异点

刘妮, 罗芸青, 梁九卿
cstr: 32037.14.aps.74.20250075

Quantum phase transition and exceptional points in dissipative optical cavity with nonlinear atom-photon interaction

LIU Ni, LUO Yunqing, LIANG Jiuqing
cstr: 32037.14.aps.74.20250075
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于Dicke模型引入非厄米原子-场耦合, 本文通过调节非线性原子-光子相互作用研究开放Dicke模型的量子相变和奇异点. 通过厄米算符进行相似变换, 然后对系统对角化得到有效的非厄米哈密顿量, 并利用自旋相干态变分法计算宏观量子态的能量泛函. 非厄米Dicke模型主要结果是: 系统超辐射相和相关量子相变完全消失, 出现了不稳定的非零光子数态; 在泵浦场产生的非线性原子-光子相互作用影响下, 系统的量子相变发生了显著变化; 能谱出现两个奇异点, 两个奇异点之间的能谱为复数, 而其他区域为纯实数; 红、蓝腔-泵浦场失谐调控下, 相图显示出丰富的量子相变. 随着原子-场耦合强度的增大, 系统出现从超辐射相到正常相的新奇反向量子相变, 不同于Dicke模型.
    Dicke model, as an important many-body model in quantum optics, describes the interaction between multiple identical two-level atoms and a quantized electromagnetic field. This spin-boson model shows collective phenomena in light-matter interaction systems and can undergo a second-order quantum phase transition from a normal phase to a superradiant phase when the coupling strength between the two-level atoms and the optical field exceeds a critical value. Dicke model embodies unique many-body quantum theories. And it has been widely studied and obtained many significant research results in quantum information, quantum process, and other quantum systems. Meanwhile, Dicke model also has wide applications in quantum optics and condensed matter physics.The extended Dicke model, describing the interaction of a Bose-Einstein condensate in an optical cavity, provides a remarkable platform for studying extraordinary quantum phase transitions in theory and experiment. Based on the recent experiment on non-Hermitian coupling between two long-lived atomic spin waves in an optical cavity, in this work we use spin-coherent-state variational method and present the macroscopic quantum-state energy of the non-Hermitian Dicke model.The spin coherent state variational method has an advantage in the theoretical research of macroscopic quantum states, especially in the normal and the inverted pseudospin states. In the variational method, optical coherent states and atomic extremum spin coherent states are used as the trial wave functions. A Hermitian transformation operator is proposed to diagonalize the non-Hermitian Hamiltonian, which is different from the ordinary quantum mechanics where the transformation operator must be unitary. Herein, the energy function is not necessarily real in the entire coupling region. Beyond an exceptional point, the spectrum becomes complex and introducing biorthogonal sets of atomic extremum states is necessary to evaluate the average quantities.The normal phase (for the zero average photon number) possesses real energy and atomic population. The non-Hermitian interaction destroys the superradiant phase (for the stable nonzero average photon number) and leads to the absence of quantum phase transition. However, the introduced atom-photon interaction, which is induced by the pump field experimentally, can change the situation, dramatically. The pump field can balance the loss by the non-Hermitian atom-photon interaction to achieve the superradiant phase.An interesting double exceptional point are observed in the energy functional. There is the real spectrum below the first exceptional point and beyond the second exceptional point, while there is a complex spectrum between these two exceptional points. The superradiant phase appears only beyond a critical value, which is related to the nonlinear interaction and the pump laser. A new and inverted quantum phase transition from the superradiant phase to the normal phase, is observed by modulating the atom-field coupling strength. The superradiant phase of the population inversion state appears for a negative effective frequency and a large atom-photon interaction. The influence of the dissipative coupling may be observed in cold atom experiment in an optical cavity. All the parameters adopted in this work are the actual experimental parameters.
      通信作者: 刘妮, 317446484@qq.com
    • 基金项目: 国家自然科学基金(批准号: 12374312)和山西省回国留学人员科研经费(批准号: 2022-014)资助的课题.
      Corresponding author: LIU Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12374312) and the Scholarship Council of Shanxi Province, China (Grant No. 2022-014).
    [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [3]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [4]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. D. 70 025001Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Heiss W D 2004 J. Phys. A. 37 2455Google Scholar

    [7]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [8]

    Roccati F, Palma G M, Bagarello F, Ciccarello F 2022 Open Syst. Inf. Dyn. 29 2250004Google Scholar

    [9]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [10]

    Sticlet D, Dóra B, Moca C P 2022 Phys. Rev. Lett. 128 016802Google Scholar

    [11]

    Peng Y, Jie J W, Yu D P, Wang Y C 2022 Phys. Rev. B. 106 L161402Google Scholar

    [12]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [13]

    Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024 Phys. Rev. Lett. 132 256902Google Scholar

    [14]

    Zhang C, Liang P F, Lambert N, Cirio M 2024 Phys. Rev. Res. 6 023012Google Scholar

    [15]

    Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024 Phys. Rev. X Quantum 5 010344Google Scholar

    [16]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [17]

    Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020 Phys. Rev. Lett. 125 260601Google Scholar

    [18]

    Turkeshi X, Schiró M 2023 Phys. Rev. B 107 L020403Google Scholar

    [19]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [20]

    Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [21]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A. 90 023622Google Scholar

    [23]

    Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012 Phys. Rev. A 85 013817Google Scholar

    [24]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001Google Scholar

    [25]

    Buijsman W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [26]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A. 107 043706Google Scholar

    [27]

    Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018 Phys. Rev. A. 98 043805Google Scholar

    [28]

    Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020 Eur. Phys. J. D. 74 200Google Scholar

    [29]

    Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019 Front. Phys. 14 52602Google Scholar

    [30]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [31]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [32]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [33]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A. 75 013804Google Scholar

    [34]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [35]

    Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016 Nat. Phys. 2 1139

    [36]

    Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020 Phys. Rev. Lett. 124 030401Google Scholar

    [37]

    Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023 Nat. Nanotech. 18 706Google Scholar

    [38]

    Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601Google Scholar

    [39]

    Markham D, Vedral X 2003 Phys. Rev. A. 67 042113Google Scholar

    [40]

    Liu N, Huang S, Liang J Q 2022 Results Phys. 40 105813Google Scholar

    [41]

    Mostafazadeh A 2002 Nucl. Phys. B 640 419Google Scholar

    [42]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [43]

    Mostafazadeh A 2007 Phys. Lett. B. 650 208Google Scholar

    [44]

    Gu Y, Bai X M, Hao X L, Liang J Q 2022 Results Phys. 38 105561Google Scholar

    [45]

    Gu Y, Hao X L, Liang J Q 2022 Ann. Phys. (Berlin). 534 2200069Google Scholar

    [46]

    梁九卿, 韦联福 2023 量子物理新进展(第3版) (北京: 科学出版社)

    Liang J Q, Wei L F 2023 New Advances in Quantum Physics (3rd Ed.) (Beijing: Science Press

  • 图 1  (a) 横向泵浦激光器捕获光腔中冷原子的实验原理图; (b) 大失谐$ {\varDelta _{\mathrm{a}}} $下原子能级跃迁图

    Fig. 1.  (a) Experimental schematic for cold atoms trapped in an optical cavity with a transverse pumping laser; (b) transition diagram of atomic energy level in the large detuning $ {\varDelta _{\mathrm{a}}} $.

    图 2  能量本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在${n_{\text{p}}}{\text{-}}g$平面的相图

    Fig. 2.  Phase diagram of ${n_{\text{p}}}{\text{-}}g$ plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$.

    图 3  能量本征值${\varepsilon _ \pm }$的实部和虚部随原子-场耦合强度$g$(a)和平均光子数${n_{\text{p}}}$(b)变化的示意图

    Fig. 3.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as a function of the atom-field coupling strength $g$(a) and the mean photon number ${n_{\text{p}}}$(b).

    图 4  (a) 平均能量${\varepsilon _ \pm }$和(b) 平均光子数${n_{\text{p}}}$随原子-场耦合强度$g$变化的示意图, 腔频率与原子跃迁频率满足关 系$ \omega_{\mathrm{f}}=\omega_0 $

    Fig. 4.  (a) The average energy ${\varepsilon _ \pm }$ and (b) the average photon number ${n_{\text{p}}}$ as a function of the atom-field coupling strength $g$ with the cavity frequency and the atomic transition frequency satisfy the relation $ \omega_{\mathrm{f}}=\omega_0 $.

    图 5  本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在U-g平面的相图, 光子数${n_{\text{p}}} = 1$

    Fig. 5.  Phase diagram of U-g plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$ for mean photon number ${n_{\text{p}}} = 1$.

    图 6  本征值${\varepsilon _ \pm }$的实部和虚部随原子-场耦合强度$g$(a)和原子-光子相互作用$U$(b)变化的示意图

    Fig. 6.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as a function of the atom-field coupling strength $g$ (a) and the atom-photon interaction $U$(b).

    图 7  本征值的虚部$\text{Im} [{\varepsilon _ \pm }]$在${n_{\text{p}}}{\text{-}}U$平面的相图, 原子-场耦合强度$g = 5$

    Fig. 7.  Phase diagram of ${n_{\text{p}}}{\text{-}}U$ plane about the imaginary part of the eigenvalues $\text{Im} [{\varepsilon _ \pm }]$ for atom-field strength $g = 5$.

    图 8  本征值${\varepsilon _ \pm }$的实部和虚部随光子数${n_{\text{p}}}$ (a)和原子-光子相互作用$U$(b)变化的示意图

    Fig. 8.  The real part and the imaginary part of the eigenvalue ${\varepsilon _ \pm }$ as functions of the photon number ${n_{\text{p}}}$(a) and the atom-photon interaction $U$(b).

    图 9  g-U空间(a)红失谐$\varDelta = 40$和(b)蓝失谐$\varDelta = - 40$的相图. 图(b)中标签(1)表示${\text{NP}_{\text{co}}}\left( {{N_ - }, {S_ + }} \right)$

    Fig. 9.  Phase diagrams in the g-U space for (a) red detuning $\varDelta = 40$ and (b) blue detuning $\varDelta = - 40$. Label (1) is the NP denoted by ${\text{N}}{{\text{P}}_{{\text{co}}}}\left( {{N_ - }, {S_ + }} \right)$.

  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [3]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [4]

    Bender C M, Brody D C, Jones H F 2004 Phys. Rev. D. 70 025001Google Scholar

    [5]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [6]

    Heiss W D 2004 J. Phys. A. 37 2455Google Scholar

    [7]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [8]

    Roccati F, Palma G M, Bagarello F, Ciccarello F 2022 Open Syst. Inf. Dyn. 29 2250004Google Scholar

    [9]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [10]

    Sticlet D, Dóra B, Moca C P 2022 Phys. Rev. Lett. 128 016802Google Scholar

    [11]

    Peng Y, Jie J W, Yu D P, Wang Y C 2022 Phys. Rev. B. 106 L161402Google Scholar

    [12]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [13]

    Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024 Phys. Rev. Lett. 132 256902Google Scholar

    [14]

    Zhang C, Liang P F, Lambert N, Cirio M 2024 Phys. Rev. Res. 6 023012Google Scholar

    [15]

    Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024 Phys. Rev. X Quantum 5 010344Google Scholar

    [16]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [17]

    Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020 Phys. Rev. Lett. 125 260601Google Scholar

    [18]

    Turkeshi X, Schiró M 2023 Phys. Rev. B 107 L020403Google Scholar

    [19]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [20]

    Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [21]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [22]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A. 90 023622Google Scholar

    [23]

    Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012 Phys. Rev. A 85 013817Google Scholar

    [24]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001Google Scholar

    [25]

    Buijsman W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [26]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A. 107 043706Google Scholar

    [27]

    Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018 Phys. Rev. A. 98 043805Google Scholar

    [28]

    Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020 Eur. Phys. J. D. 74 200Google Scholar

    [29]

    Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019 Front. Phys. 14 52602Google Scholar

    [30]

    赵秀琴, 张文慧 2024 物理学报 73 240301Google Scholar

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73 240301Google Scholar

    [31]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [32]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007 Nature 450 268Google Scholar

    [33]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A. 75 013804Google Scholar

    [34]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [35]

    Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016 Nat. Phys. 2 1139

    [36]

    Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020 Phys. Rev. Lett. 124 030401Google Scholar

    [37]

    Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023 Nat. Nanotech. 18 706Google Scholar

    [38]

    Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601Google Scholar

    [39]

    Markham D, Vedral X 2003 Phys. Rev. A. 67 042113Google Scholar

    [40]

    Liu N, Huang S, Liang J Q 2022 Results Phys. 40 105813Google Scholar

    [41]

    Mostafazadeh A 2002 Nucl. Phys. B 640 419Google Scholar

    [42]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [43]

    Mostafazadeh A 2007 Phys. Lett. B. 650 208Google Scholar

    [44]

    Gu Y, Bai X M, Hao X L, Liang J Q 2022 Results Phys. 38 105561Google Scholar

    [45]

    Gu Y, Hao X L, Liang J Q 2022 Ann. Phys. (Berlin). 534 2200069Google Scholar

    [46]

    梁九卿, 韦联福 2023 量子物理新进展(第3版) (北京: 科学出版社)

    Liang J Q, Wei L F 2023 New Advances in Quantum Physics (3rd Ed.) (Beijing: Science Press

  • [1] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [2] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [3] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [5] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [7] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [8] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [9] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [10] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [11] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [12] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵. 物理学报, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [13] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [14] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [15] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [16] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [17] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [18] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [19] 蔡 卓, 陆文彬, 刘拥军. 交错Dzyaloshinskii-Moriya相互作用对反铁磁Heisenberg链纠缠的影响. 物理学报, 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  353
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-04-17
  • 上网日期:  2025-05-10

/

返回文章
返回