搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多能级里德伯原子中实现3.4 GHz微波增强测量

薛晶晶 李若楠 胡雪松 孙培晟 周海涛 张俊香

引用本文:
Citation:

多能级里德伯原子中实现3.4 GHz微波增强测量

薛晶晶, 李若楠, 胡雪松, 孙培晟, 周海涛, 张俊香

Enhanced sensing of 3.4 GHz microwave in multi-level Rydberg atomic system

XUE Jingjing, LI Ruonan, HU Xuesong, SUN Peisheng, ZHOU HaiTao, ZHANG Junxiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 里德伯原子微波测量系统是不同于传统电子微波测量的新型全光学测量技术, 它利用里德伯原子与微波场的强相干耦合效应, 将微波场转化为原子相干光谱的特性测量, 目前已成为高灵敏度高精度微波测量的主要研究领域. 微波场与里德伯原子相干耦合过程中的退相干机理会极大地影响微波场与相干光谱的转换效率, 从而影响微波电场测量灵敏度. 我们实验研究了在多能级里德伯铯原子系统中, 实现中心频率为3.4 GHz微波测量的最佳增强条件以及0.3 GHz动态范围测量. 利用铯原子D1线和D2线构成的多能级光学泵浦效应减小里德伯原子的退相干, 从而增强里德伯原子的电磁诱导透明(EIT)量子相干特性, 以及增强微波场作用产生的EIT-AT分裂谱, 实现微波场的增强测量.
    The Rydberg-based microwave detection is an all-optical technology that uses the strong coherent interaction between Rydberg atoms and microwave field. Different from the traditional microwave meter, the Rydberg atomic sensing is a new-type microwave detector that transforms the microwave spectrum into a coherent optical spectrum, and arouses increasingly the interests due to its high sensibility. For this kind of sensor, the coherence effect induced by coupling atoms with microwave plays a key role, and the decoherence may reduce the sensitivity. A multi-level Rydberg atomic scheme with optimized quantum coherence, which enhances both the bandwidth and the sensitivity for 4 GHz microwave sensing, is demonstrated experimentally in this work. The enhanced quantum coherence of Rydberg electromagnetically induced transparency (EIT) and microwave induced Autler-Townes(AT) splitting in EIT windows are shown using optical pumping at D1 line. The enhanced sensitivity at 3.4 GHz with 0.3 GHz bandwidth can be realized, based on the enhanced EIT-AT spectrum. The experimental results show that in the stepped Rydberg EIT system, the spectral width of EIT and microwave field EIT-AT can be narrowed by optical pumping(OP), so the sensitivity of microwave electric field measurement can be improved. After optimizing the EIT amplitude and adding single-frequency microwaves, the sensitivity of the microwave electric field measurement observed by the AT splitting interval is improved by 1.3 times. This work provides a reference for utilizing atomic microwave detection.
  • 图 1  里德伯原子微波测量实验 (a)里德伯133Cs原子能级图; (b)实验装置示意图

    Fig. 1.  Rydberg atomic microwave measurement experiment: (a) Rydberg 133Cs atomic energy level diagram; (b) schematic diagram of the experimental setup.

    图 2  微波探测实验结果 (a)四能级EIT-AT分裂谱; 黑线为微波与里德伯态共振耦合的EIT-AT谱(3.4 GHz), 红线和蓝线分别为微波频率发生红移或蓝移的耦合谱(3.276—3.516 GHz); (b)OP效应增强的EIT和EIT-AT谱; (c)不同再泵浦光频率失谐对EIT峰增强特性; (d)OP效应和无OP效应时EIT-AT谱宽的对比

    Fig. 2.  Experimental results of microwave detection: (a) Four-level EIT-AT fission spectra; the black line is the EIT-AT spectrum (3.4 GHz) of microwave and Rydberg state resonance coupling, the red line and blue line are the coupling spectrum of microwave frequency with red shift or blue shift (3.276–3.516 GHz); (b) EIT and EIT-AT spectra with enhanced OP effect; (c) the enhancement characteristics of EIT peak by different repump optical frequency detuning; (d) the comparison of EIT-AT spectral width between OP effect and no OP effect.

    图 3  不同微波频率失谐和微波功率对EIT-AT分裂谱的影响

    Fig. 3.  Effects of different microwave frequencies and microwave power on EIT-AT splitting spectrum.

  • [1]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [2]

    Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63

    [3]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel Propag. Lett. 18 1853

    [4]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. A 15 014053

    [5]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. 129 154503

    [6]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455

    [7]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [8]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053

    [9]

    Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alú A, Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001Google Scholar

    [10]

    Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [11]

    Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024 Chin. Phys. B 33 050702

    [12]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101Google Scholar

    [13]

    Jia F D , Yu Y H , Liu X B , Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2022 J. Appl. Phys. 132 244401

    [14]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2023 Appl. Phys. Lett. 122 161103

    [15]

    Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110

    [16]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432

    [17]

    Chopinaud A, Pritchard J D 2021 Phys. Rev. Appl. 16 024008Google Scholar

    [18]

    Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103

    [19]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911

    [20]

    Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022 Appl. Phys. Lett. 121 011101

    [21]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [22]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [23]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981

    [24]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456

    [25]

    Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020 Appl. Opt. 59 2108

    [26]

    Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021 IEEE Trans. Quantum Eng. 2 1

    [27]

    李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201Google Scholar

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201Google Scholar

    [28]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726

    [29]

    Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499

    [30]

    He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013 Phys. Rev. A 87 033402

    [31]

    Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar

    [32]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803

    [33]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931

    [34]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [35]

    Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1133Google Scholar

    [36]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Phys. 45 015401

    [37]

    Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J , Li Y X, Peng Y D 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1664

    [38]

    Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022 Front. Phys. 10 846687Google Scholar

    [39]

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801 [王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才 2023 物理学报 72 087801]Google Scholar

    Wang Q X, Wang Z H, Liu Y X, Guan S J, He J, Zhang P F, Li G, Zhang T C 2023 Acta Phys. Sin. 72 087801Google Scholar

    [40]

    Moon H S, Lee W K, Lee L, Kim J B 2018 IEEE Conf. Publ. 85 3965

  • [1] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, doi: 10.7498/aps.74.20240900
    [2] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析. 物理学报, doi: 10.7498/aps.74.20241362
    [3] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, doi: 10.7498/aps.73.20231778
    [4] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究. 物理学报, doi: 10.7498/aps.73.20240162
    [5] 谢轲, 罗继红, 姚星灿. 基于退磁冷却的镝原子玻色-爱因斯坦凝聚制备. 物理学报, doi: 10.7498/aps.73.20241299
    [6] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, doi: 10.7498/aps.72.20222059
    [7] 廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤. 光晶格作用下里德伯冷原子系统中的二维空间光孤子. 物理学报, doi: 10.7498/aps.72.20230096
    [8] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, doi: 10.7498/aps.72.20222030
    [9] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, doi: 10.7498/aps.72.20231041
    [10] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [11] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, doi: 10.7498/aps.71.20220972
    [12] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, doi: 10.7498/aps.70.20210102
    [13] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, doi: 10.7498/aps.68.20182283
    [14] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器. 物理学报, doi: 10.7498/aps.67.20172636
    [15] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, doi: 10.7498/aps.66.193701
    [16] 蒋利娟, 张现周, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯锂原子的相干激发与控制. 物理学报, doi: 10.7498/aps.62.013101
    [17] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, doi: 10.7498/aps.61.124205
    [18] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, doi: 10.7498/aps.61.114214
    [19] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, doi: 10.7498/aps.61.043101
    [20] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, doi: 10.7498/aps.55.221
计量
  • 文章访问数:  302
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-01-30
  • 上网日期:  2025-02-21

/

返回文章
返回