搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理

张响 宋英杰 刘海顺 熊翔 杨卫明 韩陈康

引用本文:
Citation:

Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理

张响, 宋英杰, 刘海顺, 熊翔, 杨卫明, 韩陈康

High-temperature oxidation and crystallization mechanism of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy

ZHANG Xiang, SONG Yingjie, LIU Haishun, XIONG Xiang, YANG Weiming, HAN Chenkang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 铁基非晶合金具有高的饱和磁感应强度及低的矫顽力和损耗, 是高频变压器和扼流圈铁芯等器件的理想材料. 然而, 该类合金晶化温度低并容易氧化, 其在高温环境中的应用受到限制. 铜和铌的添加可抑制晶核长大、提高热稳定性, 但对合金的高温抗氧化性能及结构演化的影响尚不明确. 本文利用静态空气氧化实验研究了Fe73.5Si13.5B9Cu1Nb3非晶合金高温氧化后微纳尺度结构的演变及其对合金性能的影响. 微纳结构演化揭示硅和铌在650 ℃氧化过程中快速扩散至氧化区域并形成致密氧化层, 进而阻碍氧元素向合金内部扩散; 合金内部则形成以铁元素为主的α-Fe(Si)相, 其晶粒尺寸随着氧化时间而缓慢长大. 热动力学行为表明氧化过程中硅和铌的偏析能提高合金体系热力学稳定性, 抑制晶化过程中形成多种金属间化合物. 磁滞回线结果表明, 经650 ℃氧化后, 合金的饱和磁感应强度保持不变; 同时, 氧化时间为5 min时, 矫顽力约为0.3 Oe, 氧化时间延长至0.5 h后, 矫顽力逐渐增大至61 Oe.
    Fe-based amorphous alloys are widely used in electronic devices such as high-frequency transformers and choke cores due to their low coercivity, low loss, and high saturation magnetic induction intensity. However, these alloys have a relatively low crystallization temperature and are prone to oxidation, which limits their applications in high-temperature environments. The addition of copper and niobium elements can suppress the growth of crystal nuclei and improve thermal stability. However, the influences on the alloy's high-temperature oxidation resistance and structural evolution are still unclear. In this work, static air oxidation is used to investigate the microstructure evolution of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy after high-temperature oxidation and its influence on magnetic properties. Besides, long-time oxidation, say, 3000 hours or longer at 500 ℃, is generally hard to perform in the laboratory. Thus, the Van’t Hoff’s rule is used to evaluate outcomes under the condition of the long-time and relatively low-temperature oxidation through using rapid high-temperature oxidation. Based on Van’t Hoff’s rule, the oxidation at 650°C for 5 min will show similar or more severe oxidation effects on the microstructure of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 500 ℃ for 2730 h. The microstructure evolution reveals that silicon and niobium in this alloy will quickly diffuse toward the sample surface during oxidation at 650 ℃, and these two elements will form a dense layer to impede oxygen diffusion. Meanwhile, an α-Fe(Si) phase mainly composed of iron elements will be generated in the alloy, with its grain size slowly increasing in the oxidation process. Thermodynamic analysis indicates that the segregation of silicon and niobium can preserve the thermodynamic stability of the alloy system during oxidation and suppress the formation of intermetallic compounds during crystallization. The magnetic hysteresis loop results show that the coercivity of Fe73.5Si13.5B9Cu1Nb3 alloy after 5-min oxidation at 650°C will stay at approximately 0.3 Oe, suggesting that the Fe73.5Si13.5B9Cu1Nb3 alloy may be a candidate for operating at 500 ℃ for more than 2700 h. Subsequently, its coercivity gradually increases to 61 Oe as the oxidation time rises to 0.5 h, while its saturation magnetic induction intensity remains unchanged (~140 emu/g).
  • 图 1  淬态Fe73.5Si13.5B9Cu1Nb3非晶薄带的TEM图像 (a) 明场像和 (b) 高角环形暗场像, 插图为选区电子衍射花样(SAED)

    Fig. 1.  TEM images of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon: (a) Bright-field image and (b) high-angel annular dark-field image, the inset corresponds to the selected area electron diffraction pattern.

    图 2  淬态和经650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3合金的DSC曲线

    Fig. 2.  DSC curves of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon and Fe73.5Si13.5B9Cu1Nb3 alloys after oxidation at 650 ℃.

    图 6  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3非晶条带断面的二次电子显微图像 (a)—(c) 氧化1 min后未形成氧化层; (d)—(f) 氧化1 min后已形成氧化层; (g)—(i) 氧化3 min后的典型断面

    Fig. 6.  SEM images of the fracture surface of Fe73.5Si13.5B9Cu1Nb3 amorphous ribbons after oxidation at 650℃: (a)–(c) 1 min, showing no obvious oxide layer, (d)—(f) 1 min, exhibiting oxide layer, and (g)–(i) 3 min.

    图 7  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3合金断面的特征区域显微结构和能谱分析结果 (a) 氧化1 min; (b) 氧化3 min

    Fig. 7.  The SEM images and EDS maps from the typical fracture surface of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 650 ℃ for (a) 1 min and (b) 3 min.

    图 3  淬态和经过650 ℃氧化的Fe73.5Si13.5B9Cu1Nb3合金的XRD曲线

    Fig. 3.  X-ray diffraction patterns of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon and FeSiBCuNb alloys after oxidation at 650 ℃ for different times.

    图 4  经过650 ℃氧化3 min后Fe73.5Si13.5B9Cu1Nb3非晶条带内部纳米晶的TEM表征 (a) 明场像; (b) 暗场像; (c) 选区电子衍射花样; (d) 晶粒尺寸分布图

    Fig. 4.  The TEM characterization of newly formed nanograins in the amorphous ribbon after oxidation at 650℃ for 3 min: (a) Bright-field image; (b) dark-field image; (c) selected area electron diffraction pattern; (d) grain size distribution.

    图 5  经过650 ℃氧化3 min后Fe73.5Si13.5B9Cu1Nb3条带内部的高角环形暗场像及其对应的Fe, Si, Nb和Cu元素的分布图

    Fig. 5.  High-angel annular dark-field image combined elemental distribution maps of Fe, Si, Nb, and Cu among the Fe73.5Si13.5B9Cu1Nb3 ribbon after oxidation at 650 ℃ for 3 min.

    图 8  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3非晶条带粉末、铁硅粉末和铁硅铝粉末 (a)—(c) VSM曲线, 其中(b), (c)为VSM曲线局部放大图, (d)饱和磁感应强度和矫顽力对比

    Fig. 8.  (a)–(c) VSM curves, (d) M and Hc of Fe73.5Si13.5B9Cu1Nb3 amorphous powders after oxidation at 650 ℃ for different times, compared by FeWCr and FeSi9Al5 powders.

    表 1  650 ℃高温氧化不同时间后非晶条带析出纳米晶晶粒尺寸计算结果

    Table 1.  The calculated grain size of newly formed nanograins in Fe73.5Si13.5B9Cu1Nb3 amorphous ribbons after oxidation at 650℃ for different times.

    Sample No.Oxidation time
    at 650 ℃/min
    FWHM
    /(°)

    /(°)
    Dhkl
    /nm
    650-110.96044.76969.35
    650-330.64745.131013.89
    650-550.56445.197615.94
    650-30300.46445.182619.37
    650-60600.41545.182021.66
    下载: 导出CSV
  • [1]

    Lang R Q, Chen H Y, Zhang J R, Li H P, Guo D F, Kou J Y, Zhao J, Fang Y K, Wang X Q, Qi X W, Wang Y D, Ren Y, Wang H Z 2024 Adv. Sci. 11 2402162Google Scholar

    [2]

    Panda A K, Mohanta O, Mitra A, Jiles D C, Lo C C H, Melikhov Y 2007 J. Magn. Magn. Mater. 316 e886Google Scholar

    [3]

    董哲, 陈国钧, 彭伟锋, 高温应用软磁材料 2005 金属功能材料 12 35Google Scholar

    Dong Z, Chen G J, Peng W F 2005 Met. Funct. Mater. 12 35Google Scholar

    [4]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [5]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 80Google Scholar

    [6]

    Zhang R, Zhou C, Chen K Y, Cao K Y, Zhang Y, Tian F H, Murtaza A, Yang S, Song X P 2021 Scr. Mater. 203 114043Google Scholar

    [7]

    Santhosh Kumar R, Rashmi, Sundara Rajan J 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO) Kottayam, India, April 28–29, 2022 p1

    [8]

    Knipling K E, Daniil M, Willard M A 2009 Appl. Phys. Lett. 95 2

    [9]

    Luo Z G, Fan X A, Zhang Y L, Yang Z J, Wang J, Wu Z Y, Liu X, Li G Q, Li Y W 2021 J. Alloy. Compd. 862 158595Google Scholar

    [10]

    Du T, Varaprasad B S D C S, Guo Z, Gellman A J, Zhu J G, Laughlin D E 2021 J. Magn. Magn. Mater. 539 168347Google Scholar

    [11]

    Wu L C, Li Y H, He A N, Zhu Z W, Zhang H F, Zhang W 2023 Intermetallics 163 108040Google Scholar

    [12]

    Yu R H, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh K M, Xiao J Q 2000 IEEE Tran. Magn. 36 3388Google Scholar

    [13]

    Corodeanu S, Hlenschi C, Chiriac H, Óvári T A, Lupu N 2023 IEEE International Magnetic Conference Sendai, Japan, May 15–19, 2023

    [14]

    Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H, Bai H Y 2023 Adv. Mater. 35 2304490

    [15]

    Ma Y, Wang Q, Zhou X Y, Hao J M, Gault B, Zhang Q Y, Dong C, Nieh T G 2021 Adv. Mater. 33 2006723Google Scholar

    [16]

    Shi R M, Wang Z, Han Y M 2019 AIP Adv. 9 055222Google Scholar

    [17]

    Fu P X, Shi J L, Shi R C, Zhang Y Y, Qi J T, Yang Y Z 2023 Mater. Today Commun. 36 106685Google Scholar

    [18]

    Wu Y, Dai Z K, Liu R R, Zhou H T 2024 J. Alloy. Compd. 981 173713Google Scholar

    [19]

    Zhang Y K, Zhu J, Li S, Wang J, Ren Z M 2022 J. Mater. Sci. Technol. 102 66Google Scholar

    [20]

    Kowalczyk M, Ferenc J, Liang X B, Kulik T 2006 J. Magn. Magn. Mater. 304 e651Google Scholar

    [21]

    Han L L, Maccari F, Soldatov I, Peter N J, Souza Filho I R, Schafer R, Gutfleisch O, Li Z M, Raabe D 2023 Nat. Commun. 14 8176Google Scholar

    [22]

    Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187 111830Google Scholar

    [23]

    Silveyra J M, Illeková E 2014 J. Alloy. Compd. 610 180Google Scholar

    [24]

    Shivaee H A, Golikand A N, Hosseini H R M, Asgari M 2010 J. Mater. Sci. 45 546Google Scholar

    [25]

    García J A, Pierna A R, Elbaile L, Crespo R D, Vara G, Marzo F F, Tejedor M 2006 J. Non-Cryst. Solids 352 5118Google Scholar

    [26]

    Zhu Z H, Yin L, Hu Q, Song H 2014 Rare Metal Mat. Eng. 43 1037Google Scholar

    [27]

    Blázquez J S, Conde C F, Conde A, Roth S, Güth A 2006 J. Magn. Magn. Mater. 304 627Google Scholar

    [28]

    May J E, Oliveira M F, Kuri S E 2003 Mater. Sci. Eng. A 361 179Google Scholar

    [29]

    Stuart F A F C, 1912 Huygens Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) Amsterdam, Netherlands, March 30, 1912 p1159

    [30]

    余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 98801Google Scholar

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 98801Google Scholar

    [31]

    Liu H S, Du Y W, Miao X X, Han K, Shen X P, Bu W K 2008 Rare Metals 27 545Google Scholar

    [32]

    Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187 111830Google Scholar

    [33]

    Luo T, Liu H L, Huang C M, Yue G, Hou F T, Yang Y Z 2023 J Mater. Sci. - Mater. Electron. 34 2167Google Scholar

    [34]

    Jonghee H, Seoyeon K, Sungwoo S, Jan S, Haein C Y 2020 Metals 10 1297Google Scholar

    [35]

    郭琦, 邓志旺, 朱乾科, 陈峰华, 胡勇, 张克维 2020 铸造技术 41 1005

    Guo Q, Deng Z W, Zhu Q K, Chen F H, Hu Y, Zhang K W 2020 Foundry Technology 41 1005

    [36]

    张哲峰, 屈瑞涛, 刘增乾 2016 金属学报 52 1171Google Scholar

    Zhang Z F, Qu R T, Liu Z Q 2016 Acta Metall. Sin. 52 1171Google Scholar

    [37]

    Lu L, Du P C, Jiang T X, Zhou T C, Wen Q B, Wang Y L, Zeng Y, Xiong X 2025 J. Eur. Ceram. Soc. 45 116885Google Scholar

    [38]

    Sun Y, Li J W, Xie L, He A N, Dong Y Q, Liu Y X, Wang C J, Zhang K W 2021 J. Non-Cryst. Solids 566 120839Google Scholar

  • [1] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理. 物理学报, doi: 10.7498/aps.73.20240249
    [2] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, doi: 10.7498/aps.72.20222037
    [3] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, doi: 10.7498/aps.71.20220873
    [4] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, doi: 10.7498/aps.71.20220446
    [5] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.096103
    [6] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, doi: 10.7498/aps.63.098102
    [7] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, doi: 10.7498/aps.63.078101
    [8] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, doi: 10.7498/aps.61.057502
    [9] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, doi: 10.7498/aps.61.177101
    [10] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究. 物理学报, doi: 10.7498/aps.59.494
    [11] 张国英, 李丹, 梁婷. 铌合金电子结构及其高温氧化行为. 物理学报, doi: 10.7498/aps.59.8031
    [12] 刘贵立, 杨杰. Nb-Ti-Al合金高温氧化机理电子理论研究. 物理学报, doi: 10.7498/aps.59.4939
    [13] 刘贵立. Nb-Al合金高温氧化机理. 物理学报, doi: 10.7498/aps.59.499
    [14] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, doi: 10.7498/aps.58.5773
    [15] 张国英, 张辉, 方戈亮, 罗志成. Fe-Cr-Al合金氧化膜形成机理电子理论研究. 物理学报, doi: 10.7498/aps.58.6441
    [16] 杨全民, 许启明, 方允樟, 莫婵娟. Fe基纳米晶合金的晶化机理研究. 物理学报, doi: 10.7498/aps.58.4072
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, doi: 10.7498/aps.57.3823
    [18] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, doi: 10.7498/aps.56.3527
    [19] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, doi: 10.7498/aps.55.6157
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  512
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-24
  • 修回日期:  2025-02-15
  • 上网日期:  2025-02-24

/

返回文章
返回