搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成门极换流晶闸管开关自箝位模式下的鲁棒性

杨武华 沈思豪 贾丽萍 张超 张如亮 王彩琳

引用本文:
Citation:

集成门极换流晶闸管开关自箝位模式下的鲁棒性

杨武华, 沈思豪, 贾丽萍, 张超, 张如亮, 王彩琳

Robustness of integrated gate commutated thyristor in switching self-clamping mode

YANG Wuhua, SHEN Sihao, JIA Liping, ZHANG Chao, ZHANG Ruliang, WANG Cailin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于多单元结构模型, 对集成门极换流晶闸管(IGCT)在过应力条件下的关断特性进行了仿真. 发现在开关自箝位模式(SSCM)下, 虽然器件的端电压被箝位, 但其内部产生了移动速度非常缓慢的电流丝, 从而使得器件非常容易发生重触发、甚至热击穿. 并且, IGCT静态雪崩击穿特性决定了器件在SSCM下电流丝的性质. IGCT寄生pnp晶体管的共基极电流增益αpnp越大, SSCM下雪崩诱发电流丝的强度越大, 移动速度越慢, 从而大大降低器件的鲁棒性.
    As a thyristor-like device, integrated gate commutated thyristor (IGCT) is more applicable to the high-voltage and high-power fields due to the lower on-state voltage drop, and a combination of transparent anode and hard drive enables IGCT to turn off faster and more reliably. However, with an increase in power capacity of IGCT, the reliability of IGCT is becoming an increasing concern.Based on the multi-cell structure model, the turn-off characteristics and robustness of IGCT under over-stress conditions are studied in this work. The results show that during GCT turning off, the modulation of free carriers to the electric field in the space charge region makes the dynamic avalanche effect occur at the anode-cathode voltage much lower than the rated blocking voltage of the device, and the avalanche-induced current filament effect may occur due to the distortion of electric field, resulting in negative differential resistance effect at strong dynamic avalanche. In comparison, the behavioral characteristics of current filament at different stages of turn-off behave differently.During the voltage rising period when IGCT turns off, the avalanche-induced current filament can move rapidly, which will not cause the temperature to rise too much and has little influence on the robustness of the device. In contrast, when the anode-cathode voltage rises close to the static avalanche breakdown voltage, the switching self-clamping mode (SSCM) will occur, and the device will operate in its static avalanche breakdown mode. If the device operates on the negative differential resistance (NDR) branch of its static avalanche breakdown characteristic curve, a very slow moving current filament driven only by temperature rise will appear. This makes the power consumption that is required to be borne by the entire device undertaken only by the area where the current filament is located, thus resulting in a very high local current density and a large local temperature rise, and the device is easy to re-trigger or thermally break down.The static avalanche breakdown characteristics of IGCT determine the nature of the current filament under SSCM. The larger the common-base current gain αpnp of the parasitic pnp transistor of IGCT, the stronger the avalanche-induced current filament under SSCM is and the slower its movement speed, thereby significantly reducing the robustness of the device. Therefore, in order to improve the robustness of the device under SSCM, more precise control of αpnp is required during the designing of GCT chips.
  • 图 1  IGCT组件、管芯与结构剖面示意图 (a) IGCT组件; (b) 直径为91 mm的GCT管芯; (c) GCT单元的结构剖面示意图

    Fig. 1.  IGCT module and chip: (a) IGCT module; (b) GCT chip with a diameter of 91 mm; (c) structural profile diagram of GCT unit.

    图 2  IGCT的关断测试电路

    Fig. 2.  Turn-off test circuit of IGCT.

    图 3  4.5 kV IGCT过应力关断测试中的SSCM现象(VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, 初始温度T = 300 K)

    Fig. 3.  The occurrence of SSCM during the test of 4.5 kV IGCT turn-off. (VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, T = 300 K at the initial stage)

    图 4  5单元IGCT结构仿真模型

    Fig. 4.  Structural model of IGCT with 5 cells used for simulation.

    图 5  不同阳极区掺杂下IGCT过应力下的关断特性曲线(VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, T = 300 K)

    Fig. 5.  Turn-off curves of IGCT with different doping concentrations of anode region at over-stress (VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, T = 300 K).

    图 6  IGCT不同阳极区掺杂浓度下的关断特性及各个单元电流的抽取 (a) NA1; (b) NA2; (c) NA3; (d) NA4

    Fig. 6.  Turn-off characteristics of IGCT at different anode doping concentrations and current extraction of each cell: (a) NA1; (b) NA2; (c) NA3; (d) NA4.

    图 7  图6(d)中不同时刻器件内部的电流密度分布

    Fig. 7.  Current density distribution inside the device at different times in Fig. 6(d).

    图 8  阳极区掺杂为NA1时IGCT关断特性的电热耦合仿真结果(VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, 初始T = 300 K)

    Fig. 8.  Electrothermal simulation results of IGCT turn-off characteristics at the NA1 of the anode region doping (VDC = 2900 V, IT = 5600 A, Lσ = 1 µH, T = 300 K at the initial stage).

    图 9  IGCT SSCM期间雪崩产生电流丝在n+阴极区下方引起的强烈电流聚集效应(对应图8t = 501.6 µs)

    Fig. 9.  Strong current crowding caused by current filament of IGCT under n+ cathode region during SSCM (Corresponding to t = 501.6 µs in Figure 8).

    图 10  IGCT过应力关断过程中电压上升阶段(t = 501, 502 µs)与电压箝位期间(t = 505, 508 µs)器件内部的空穴浓度p与电场强度E纵向分布曲线(对应图6(d))

    Fig. 10.  Vertical distribution curves of hole concentration p and electric field intensity E inside the device during the voltage rise stage (t = 501, 502 µs) and voltage clamp period (t = 505, 508 µs) during the IGCT over-stress turn-off (Corresponding to Figure 6(d)).

    图 11  不同阳极区掺杂浓度下, IGCT在常温(300 K)与高温(400 K)下的雪崩击穿特性曲线

    Fig. 11.  The avalanche breakdown curves of 4.5 kV AS-GCT with different anode doping at high and room temperature.

    图 12  IGCT在雪崩击穿模式下, 器件的αpnp与雪崩产生电流密度JA的关系曲线

    Fig. 12.  The relationship curves of αpnp and JA under the avalanche breakdown of IGCT.

    表 1  4.5 kV非对称GCT的主要结构参数

    Table 1.  Main structural parameters of 4.5 kV asymmetry GCT.

    掺杂(峰值)
    浓度/cm–3
    厚度/宽度/μm
    n-基区 1×1013 厚度: 370
    n场阻止层 2×1016 厚度: 47
    p+透明阳极区 1×1017—5×1018 厚度: 3
    浅p基区 5×1016 p基区整体厚度: 110
    深p基区
    n+阴极区 1×1020 厚度/宽度: 20/200
    单元宽度(阴极条宽度) 400
    下载: 导出CSV
  • [1]

    Stiasny T, Quittard O, Waltisberg C, Meier U 2018 Microelectron. Reliab. 88 510

    [2]

    Kang Z, Tang Y, Zhan C, Wang W, Zhu L, Sun H, Ji S 2024 CPSS & IEEE International Symposium on Energy Storage and Conversion Xi'an, China, November 8-11, 2024 p190

    [3]

    Wu J, Pan J, Ren C, J Liu, Zhao B, Yu Z, Zeng R 2025 IEEE Trans. Power Electron. 40 5223Google Scholar

    [4]

    Wang J, Chen L, Zhang X, Liu J, Zhao B, Yu Z, Wu J, Zeng R 2025 IEEE Trans. Power Electron 40 5309Google Scholar

    [5]

    Lutz J, Schlangenotto H 2020 Semiconductor Power Devices: Physics, Characteristic, Reliability (Vol. 1) (Switzerland: Springer International Publishing AG) p108

    [6]

    Rahimo M, Kopta A, Eicher S, Schlapbach, Linder 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs Kitakyushu, Japan, May 24-27, 2004 p437

    [7]

    Rahimo M, Kopta A, Eicher S, Schlapbach U, Linder S 2005 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs Santa Barbara, CA, USA, May 23-26, 2005 p67

    [8]

    Stiasny T, Streit P 2005 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs Santa Barbara, CA, USA, May 23-26, 2005 p203

    [9]

    Yang W H, Wang C L 2021 Microelectron. Reliab. 120 114111Google Scholar

    [10]

    Yang W H, Wang C L, Yang J 2019 Microelectron. Reliab. 92 34Google Scholar

    [11]

    Lutz J, Baburske R, Chen M, B Heinze, Domeij M, Felsl HP, Schulze HJ 2009 IEEE Trans. Electron Devices 56 2825Google Scholar

    [12]

    Schulze H J, Niedernostheide F J, Pfirsch F, Baburske R 2013 IEEE Trans. Electron Devices 60 551Google Scholar

    [13]

    Baburske R, Niedernostheide F J, Lutz J, Schulze HJ 2013 IEEE Trans. Electron Devices 60 2308Google Scholar

    [14]

    Lutz J, Baburske R 2012 Microelectron. Reliab. 52 475Google Scholar

    [15]

    Oetjen J, Jungblut R, Kuhlmann U, Arkenau J, Sittig R 2000 Solid State Electron. 44 117Google Scholar

    [16]

    Baburske R, Lutz J, Heinze B 2010 IEEE International Reliability Physics Symposium Proceedings Anaheim, CA, USA, 2010, p162

    [17]

    杨武华, 王彩琳, 张如亮, 张超, 苏乐 2023 物理学报 72 078501Google Scholar

    Yang W H, Wang C L, Zhang R L, Zhang C, Su L 2023 Acta Phys. Sin. 72 078501Google Scholar

    [18]

    Yang W H, Wang C L, Zhang R L, Su L, Zhang Q 2021 IEEE Trans. Electron Devices 68 208Google Scholar

    [19]

    Dong M L, Yang W H 2024 2024 3rd International Symposium on Semiconductor and Electronic Technology Xi'an, China, August 23-25, 2024 p315

    [20]

    Yang W H, Wang C L, Yang J, Zhang Q, Su L 2021 Microelectron. Reliab. 118 114048Google Scholar

  • [1] 李鸿霞, 李亭美, 王曾璞, 陈宇辉, 张向东. 连续时间晶体周期性振荡的鲁棒性分析. 物理学报, doi: 10.7498/aps.74.20250036
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, doi: 10.7498/aps.73.20241002
    [3] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, doi: 10.7498/aps.72.20231242
    [4] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, doi: 10.7498/aps.72.20222431
    [5] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, doi: 10.7498/aps.72.20222248
    [6] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, doi: 10.7498/aps.71.20212380
    [7] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, doi: 10.7498/aps.68.20182234
    [8] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, doi: 10.7498/aps.64.188901
    [9] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, doi: 10.7498/aps.64.048902
    [10] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, doi: 10.7498/aps.63.028902
    [11] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, doi: 10.7498/aps.62.128901
    [12] 周武杰, 郁梅, 禹思敏, 蒋刚毅, 葛丁飞. 一种基于超混沌系统的立体图像零水印算法. 物理学报, doi: 10.7498/aps.61.080701
    [13] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, doi: 10.7498/aps.61.030503
    [14] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, doi: 10.7498/aps.61.104301
    [15] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, doi: 10.7498/aps.59.7635
    [16] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, doi: 10.7498/aps.59.1615
    [17] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, doi: 10.7498/aps.59.5870
    [18] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, doi: 10.7498/aps.57.2750
    [19] 苟学强, 张义军, 董万胜. 基于小波的雷暴强放电前地面电场的多重分形分析. 物理学报, doi: 10.7498/aps.55.957
    [20] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, doi: 10.7498/aps.54.3502
计量
  • 文章访问数:  289
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-03-08
  • 上网日期:  2025-04-08

/

返回文章
返回