-
粉末冶金制备技术是制备兼具优异力学性能和热电性能Bi2Te3基块状材料的重要途径, 但是粉末冶金制备过程中样品取向损失导致材料热电性能不高, 开发具有强板织构、细晶粒Bi2Te3基热电材料的制备技术是高性能Bi2Te3基热电材料研究的重点. 本文采用垂直转角挤压制备技术制备了系列p型Bi2Te3基材料, 系统研究了挤压温度对材料微结构和织构特征的影响规律及其对材料热电性能的影响规律, 在垂直转角挤压过程中, 材料经历了剧烈的塑性变形, 导致材料内部晶粒的破碎、重排及偏转, 同时挤压过程中高温有助于材料中晶粒的动态再结晶和生长过程, 实现了晶粒的细化, 773 K挤压样品在垂直于压力方向和平行于压力方向上分别取得了F(00l)=0.51和F(110)=0.30的高取向因子, 即从热压样品中面织构向挤压样品中板织构的转变, 这种微结构特征显著地提升了样品的载流子迁移率, 773 K挤压样品室温下载流子迁移率高达345.4 cm2·V–1·s–1, 与区熔样品相当, 表现出优异的电输运性能, 室温下功率因子达到4.43 mW·m–1·K–2, 与此同时, 773 K挤压样品的晶格热导率和双极热导率之和在323 K时降低至最小值0.78 W·m–1·K–1, 最终773 K挤压样品在323 K时获得最大ZT值1.13, 较热压样品提高了近70%. 该研究为高性能强板织构、细晶粒Bi2Te3基热电材料的制备提供了新途径, 为微型热电器件的制造奠定了重要基础.
-
关键词:
- 垂直转角挤压制备技术 /
- 挤压温度 /
- 微结构 /
- 热电性能
The preparation technology of powder metallurgy is an important way to prepare Bi2Te3-based bulk materials with excellent mechanical properties and thermoelectric properties. However, the loss of sample orientation during the preparation of powder metallurgy results in low thermoelectric properties of the materials. The development of high-performance Bi2Te3-based thermoelectric materials with strong plate texture and fine grains is the focus of research on high-performance Bi2Te3-based thermoelectric materials. In this paper, a series of p-type Bi2Te3-based materials is prepared by vertical corner extrusion preparation technology. The influences of extrusion temperature on the microstructure and texture characteristics of the material and its influence on the thermoelectric properties of the material are systematically studied. In the vertical corner extrusion process, grains preferentially grow along the minimum resistance direction perpendicular to the pressure, that is, along the extrusion direction, thereby further enhancing the (00l) texture of the original hot-pressed sample; in the direction parallel to the pressure, due to friction with the inner wall of the die in the extrusion process, this frictional resistance will promote the inversion of the grains, so that the grains are arranged in a directional manner to reduce the frictional resistance, thus forming the (110) texture, which is not present in the original hot-pressed sample, in the extruded sample, and finally completing the transition from the hot-pressed sample to the plate texture of the extruded sample. When the extrusion temperature is low, the atomic diffusion rate is low, which limits the dynamic recrystallization of the grain, the grain growth process, and the grain deflection speed. With the increase of the extrusion temperature, these processes can be carried out rapidly, thus forming a more obvious plate texture characteristic. The 773 K extruded sample achieves high orientation factors of F(00l) = 0.51 and F(110) = 0.30 in the directions perpendicular to the pressure and parallel to the pressure, respectively, and the carrier mobility is as high as 345.4 cm2·V–1·s–1 at room temperature, which is comparable to the carrier mobility of the zone melt sample, showing excellent electrical transport performance. The power factor reaches 4.43 mW·m–1·K–2 at room temperature. At the same time, the sum of lattice thermal conductivity and bipolar thermal conductivity of the 773 K extruded sample decreases to a minimum value of 0.78 W·m–1·K–1 at 323 K. Finally, the 773 K extruded sample obtains a maximum ZT value of 1.13 at 323 K, which is nearly 70% higher than that of the hot-pressed sample. This research provides a new way for preparing high-performance strong plate textures and fine-grained Bi2Te3-based thermoelectric materials, and lays an important foundation for fabricating micro thermoelectric devices.-
Keywords:
- vertical angular extrusion preparation technology /
- extrusion temperature /
- microstructure /
- thermoelectric properties
-
图 1 (a)高温热压装置及晶粒取向示意图; (b)高温垂直转角挤压装置及晶粒取向示意图. 块体Bi2Te3基样品的XRD谱图及取向因子 (c)热压样品和挤压样品垂直于压力方向; (d)热压样品和挤压样品平行于压力方向
Fig. 1. (a) Schematic diagram of high-temperature hot pressing device and grain orientation; (b) high temperature vertical angle extrusion device and schematic diagram of grain orientation. XRD spectra and orientation factors of bulk Bi2Te3 based samples: (c) Hot pressed and extruded samples perpendicular to the pressure direction; (d) hot pressed samples and extruded samples are parallel to the direction of pressure.
图 2 垂直和平行于压力方向上热压样品和挤压样品的场发射扫描电镜(FESEM)图像, 垂直于压力方向上抛光表面的背散射电子像, 以及Sb, Te和元素Bi的面扫描EDS能谱图 (a1)—(a3)热压样品; (b1)—(b3) 673 K挤压样品; (c1)—(c3) 773 K挤压样品
Fig. 2. Field emission scanning electron microscopy (FESEM) images of hot pressed and extruded samples in the vertical and parallel directions of pressure, as well as backscattered electron images of polished surfaces in the vertical direction of pressure, and surface scan EDS spectra of Sb, Te, and elemental Bi: (a1)–(a3) Hot pressed samples; (b1)–(b3) 673 K extruded sample; (c1)–(c3) 773 K extruded sample.
图 3 样品在垂直于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K挤压样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织
Fig. 3. Electron backscatter diffraction (EBSD) analysis of the sample in the direction perpendicular to the pressure, including the inverse pole map (IPF) of the inserted {000l} pole plot, grain boundary distribution, grain orientation spread (GOS) plot, and nucleus mean orientation deviation (KAM) plot: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K extruded sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.
图 4 样品在平行于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织
Fig. 4. Electron Backscatter Diffraction (EBSD) analysis of the sample in the direction parallel to the pressure, including the inverse pole pattern (IPF) diagram of the inserted {000l} pole pattern, grain boundary distribution, grain orientation spread (GOS) diagram, and nucleus mean orientation deviation (KAM) diagram: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.
图 6 样品的热输运性能 (a)总热导率κ; (b)晶格热导率与双极热导率之和κL + κb; (c)不同样品的ZT值, 以及与文献报道三元p型Bi2Te3的ZT值对比
Fig. 6. Thermal transport properties of samples: (a) Total thermal conductivity κ; (b) sum of lattice thermal conductivity and bipolar thermal conductivity κL + κb; (c) the ZT values of different samples, and the comparison with the ZT values of ternary p-type Bi2Te3 reported in the literature.
表 1 热压样品和挤压样品的室温物理性能参数
Table 1. Room temperature physical performance parameters of hot pressed sintered samples and vertical angular pressing samples.
Sample σ/(104 S·m–1) S/(μV·K–1) n/(1019 cm–3) μ/(cm2·V–1·s–1) PF/(mW·m–1·K–2) m*/m0 HP 10.9 157.6 4.02 144.1 2.72 1.13 673 K-HE 9.6 179.5 2.99 224.6 3.11 1.11 698 K-HE 10.6 189.6 2.60 252.2 3.83 1.10 723 K-HE 10.5 204.2 2.24 274.3 4.40 1.12 748 K-HE 10.1 205.4 2.15 308.5 4.26 1.10 773 K-HE 8.6 226.9 1.71 345.4 4.43 1.12 -
[1] Wei J T, Yang L L, Ma Z, Song P S, Zhang M L, Ma J, Yang F H, Wang X D 2020 J. Mater. Sci. 55 12642
Google Scholar
[2] Shi X L, Zou J, Chen Z G 2020 Chem. Rev. 120 7399
Google Scholar
[3] Xie H Y, Zhao L D, Kanatzidis M G 2023 Interdiscip. Mater. 3 5
[4] Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024 Interdiscip. Mater. 3 326
[5] Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F P, Zhang Q J, Tang X F 2024 Mater. Today Phys. 46 101524
Google Scholar
[6] Cao W Q, Lyu J N, Wang Z A, Zhang M Q, Yan Y G, Yang D W, Tang X F 2025 ACS Appl. Mater. Interfaces 17 14301
Google Scholar
[7] Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191
[8] Huang B, Yang X Q, Liu L S, Zhai P C 2015 J. Electron. Mater. 44 1668
Google Scholar
[9] Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820
Google Scholar
[10] Cheng Y D, Cojocaru-Miredin O, Keutgen J, Yu Y, kupers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316
Google Scholar
[11] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰 2024 物理学报 73 097101
Google Scholar
Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024 Acta Phys. Sin. 73 097101
Google Scholar
[12] Fu K, Yu J, Wang B, Nie X L, Zhu W T, Wei P, Zhao W Y, Zhang Q J 2024 J. Mater. Sci. -Mater. Electron. 35 319
Google Scholar
[13] Zhang W W, Liu X, Tian Z G, Zhang Y J, Li X J, Song H Z 2023 J. Electron. Mater. 52 6682
Google Scholar
[14] Huang W J, Tan X J, Cai J F, Zhuang S, Zhou C D, Wu J H, Liu G Q, Liang B, Jiang J 2023 Mater. Today Phys. 32 101022
Google Scholar
[15] Ivanov O, Yaprintsev M, Yaprintseva E, Nickulicheva T, Vasil’ev A 2024 Phys. Scr. 99 025913
Google Scholar
[16] Zhan R Y, Lyu J N, Yang D W, Liu Y T, Hua S H, Xu Z M, Wang C, Peng X, Yan Y G, Tang X F 2022 Mater. Today Phys. 24 100670
Google Scholar
[17] Paul S, Pal U, Pradhan S K 2022 Mater. Chem. Phys. 279 125736
Google Scholar
[18] Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191
[19] 鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331
Google Scholar
Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331
Google Scholar
[20] Wang X L, Shang H J, Gu H W, Chen Y T, Zhang Z H, Zou Q, Zhang L, Feng C P, Li G C, Ding F Z 2024 ACS Appl. Mater. Interfaces 16 11147
Google Scholar
[21] He Q L, Yang D L, Zhang W W, Song H Z 2024 Mod. Phys. Lett. B 38 2450224
[22] Guo Y T, Du J Y, Hu M H, Wei B, Su T C, Zhou A G 2023 J. Mater. Sci. -Mater. Electron. 34 685
Google Scholar
[23] Park G M, Lee S, Kang J Y, Baek S H, Kim H, Kim J S, Kim S K 2023 J. Adv. Ceram. 12 2360
Google Scholar
[24] Liu H Y, Zheng P L, Cai J M, Zhu B, Xu W B, Zheng Y 2023 ACS Appl. Energy Mater. 7 11269
[25] Zhu B, Luo Y, Wu H Y, Sun D, Liu L, Shu S C, Luo Z Z, Zhang Q, Suwardi A, Zheng Y 2023 J. Mater. Chem. A 11 8912
Google Scholar
[26] Joo S J, Son J H, Jang J, Min B K, Kim B S, Hong J, Lee D K, Kim H 2024 Korean J. Met. Mater. 62 796
Google Scholar
[27] Zhou J, Feng J H, Li H, Liu D, Qiu G J, Qiu F, Li J, Luo Z Z, Zou Z G, Sun R, Liu R H 2023 Small 19 2300654
Google Scholar
[28] Lu T B, Wang B Y, Li G D, Yang J W, Zhang X F, Chen N, Liu T H, Yang R G, Niu P J, Kan Z X, Zhu H T, Zhao H Z 2023 Mater. Today Phys. 32 101035
Google Scholar
[29] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 物理学报 72 097101
Google Scholar
Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin 72 097101
Google Scholar
[30] Li S K, Zha W G, Cheng Y J, Chen L, Xu M X, Guo K, Pan F 2023 ACS Appl. Mater. Interfaces 15 1167
Google Scholar
[31] Jiang Z S, Ming H W, Qin X Y, Feng D, Zhang J, Song C J, Li D, Xin H X, Li J C, He J Q 2020 ACS Appl. Mater. Interfaces 12 46181
Google Scholar
[32] Qiu J H, Yan Y G, Luo T T, Tang K C, Yao L, Zhang J, Zhang M, Su X L, Tan G J, Xie H Y, Kanatzidis M G, Uher C, Tang X F 2019 Energy Environ. Sci. 12 3106
Google Scholar
计量
- 文章访问数: 213
- PDF下载量: 7
- 被引次数: 0