搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p型Bi2Te3基材料的垂直转角挤压制备与热电性能

郜顺奇 李珺杰 陈硕 鄢永高 苏贤礼 张清杰 唐新峰

引用本文:
Citation:

p型Bi2Te3基材料的垂直转角挤压制备与热电性能

郜顺奇, 李珺杰, 陈硕, 鄢永高, 苏贤礼, 张清杰, 唐新峰

Preparation of vertical angular extrusion and thermoelectric properties of p-type Bi2Te3 based materials

GAO Shunqi, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 粉末冶金制备技术是制备兼具优异力学性能和热电性能Bi2Te3基块状材料的重要途径, 但是粉末冶金制备过程中样品取向损失导致材料热电性能不高, 开发具有强板织构、细晶粒Bi2Te3基热电材料的制备技术是高性能Bi2Te3基热电材料研究的重点. 本文采用垂直转角挤压制备技术制备了系列p型Bi2Te3基材料, 系统研究了挤压温度对材料微结构和织构特征的影响规律及其对材料热电性能的影响规律, 在垂直转角挤压过程中, 材料经历了剧烈的塑性变形, 导致材料内部晶粒的破碎、重排及偏转, 同时挤压过程中高温有助于材料中晶粒的动态再结晶和生长过程, 实现了晶粒的细化, 773 K挤压样品在垂直于压力方向和平行于压力方向上分别取得了F(00l)=0.51和F(110)=0.30的高取向因子, 即从热压样品中面织构向挤压样品中板织构的转变, 这种微结构特征显著地提升了样品的载流子迁移率, 773 K挤压样品室温下载流子迁移率高达345.4 cm2·V–1·s–1, 与区熔样品相当, 表现出优异的电输运性能, 室温下功率因子达到4.43 mW·m–1·K–2, 与此同时, 773 K挤压样品的晶格热导率和双极热导率之和在323 K时降低至最小值0.78 W·m–1·K–1, 最终773 K挤压样品在323 K时获得最大ZT值1.13, 较热压样品提高了近70%. 该研究为高性能强板织构、细晶粒Bi2Te3基热电材料的制备提供了新途径, 为微型热电器件的制造奠定了重要基础.
    The preparation technology of powder metallurgy is an important way to prepare Bi2Te3-based bulk materials with excellent mechanical properties and thermoelectric properties. However, the loss of sample orientation during the preparation of powder metallurgy results in low thermoelectric properties of the materials. The development of high-performance Bi2Te3-based thermoelectric materials with strong plate texture and fine grains is the focus of research on high-performance Bi2Te3-based thermoelectric materials. In this paper, a series of p-type Bi2Te3-based materials is prepared by vertical corner extrusion preparation technology. The influences of extrusion temperature on the microstructure and texture characteristics of the material and its influence on the thermoelectric properties of the material are systematically studied. In the vertical corner extrusion process, grains preferentially grow along the minimum resistance direction perpendicular to the pressure, that is, along the extrusion direction, thereby further enhancing the (00l) texture of the original hot-pressed sample; in the direction parallel to the pressure, due to friction with the inner wall of the die in the extrusion process, this frictional resistance will promote the inversion of the grains, so that the grains are arranged in a directional manner to reduce the frictional resistance, thus forming the (110) texture, which is not present in the original hot-pressed sample, in the extruded sample, and finally completing the transition from the hot-pressed sample to the plate texture of the extruded sample. When the extrusion temperature is low, the atomic diffusion rate is low, which limits the dynamic recrystallization of the grain, the grain growth process, and the grain deflection speed. With the increase of the extrusion temperature, these processes can be carried out rapidly, thus forming a more obvious plate texture characteristic. The 773 K extruded sample achieves high orientation factors of F(00l) = 0.51 and F(110) = 0.30 in the directions perpendicular to the pressure and parallel to the pressure, respectively, and the carrier mobility is as high as 345.4 cm2·V–1·s–1 at room temperature, which is comparable to the carrier mobility of the zone melt sample, showing excellent electrical transport performance. The power factor reaches 4.43 mW·m–1·K–2 at room temperature. At the same time, the sum of lattice thermal conductivity and bipolar thermal conductivity of the 773 K extruded sample decreases to a minimum value of 0.78 W·m–1·K–1 at 323 K. Finally, the 773 K extruded sample obtains a maximum ZT value of 1.13 at 323 K, which is nearly 70% higher than that of the hot-pressed sample. This research provides a new way for preparing high-performance strong plate textures and fine-grained Bi2Te3-based thermoelectric materials, and lays an important foundation for fabricating micro thermoelectric devices.
  • 图 1  (a)高温热压装置及晶粒取向示意图; (b)高温垂直转角挤压装置及晶粒取向示意图. 块体Bi2Te3基样品的XRD谱图及取向因子 (c)热压样品和挤压样品垂直于压力方向; (d)热压样品和挤压样品平行于压力方向

    Fig. 1.  (a) Schematic diagram of high-temperature hot pressing device and grain orientation; (b) high temperature vertical angle extrusion device and schematic diagram of grain orientation. XRD spectra and orientation factors of bulk Bi2Te3 based samples: (c) Hot pressed and extruded samples perpendicular to the pressure direction; (d) hot pressed samples and extruded samples are parallel to the direction of pressure.

    图 2  垂直和平行于压力方向上热压样品和挤压样品的场发射扫描电镜(FESEM)图像, 垂直于压力方向上抛光表面的背散射电子像, 以及Sb, Te和元素Bi的面扫描EDS能谱图 (a1)—(a3)热压样品; (b1)—(b3) 673 K挤压样品; (c1)—(c3) 773 K挤压样品

    Fig. 2.  Field emission scanning electron microscopy (FESEM) images of hot pressed and extruded samples in the vertical and parallel directions of pressure, as well as backscattered electron images of polished surfaces in the vertical direction of pressure, and surface scan EDS spectra of Sb, Te, and elemental Bi: (a1)–(a3) Hot pressed samples; (b1)–(b3) 673 K extruded sample; (c1)–(c3) 773 K extruded sample.

    图 3  样品在垂直于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K挤压样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织

    Fig. 3.  Electron backscatter diffraction (EBSD) analysis of the sample in the direction perpendicular to the pressure, including the inverse pole map (IPF) of the inserted {000l} pole plot, grain boundary distribution, grain orientation spread (GOS) plot, and nucleus mean orientation deviation (KAM) plot: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K extruded sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.

    图 4  样品在平行于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织

    Fig. 4.  Electron Backscatter Diffraction (EBSD) analysis of the sample in the direction parallel to the pressure, including the inverse pole pattern (IPF) diagram of the inserted {000l} pole pattern, grain boundary distribution, grain orientation spread (GOS) diagram, and nucleus mean orientation deviation (KAM) diagram: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.

    图 5  样品的电输运性能 (a)电导率; (b)Seebeck系数; (c)室温下载流子迁移率与载流子浓度的函数关系; (d)功率因子

    Fig. 5.  The electrical transport properties of the sample: (a) Conductivity; (b) Seebeck coefficient; (c) carrier mobility as a function of carrier concentration at room temperature; (d) power factor.

    图 6  样品的热输运性能 (a)总热导率κ; (b)晶格热导率与双极热导率之和κL + κb; (c)不同样品的ZT值, 以及与文献报道三元p型Bi2Te3ZT值对比

    Fig. 6.  Thermal transport properties of samples: (a) Total thermal conductivity κ; (b) sum of lattice thermal conductivity and bipolar thermal conductivity κL + κb; (c) the ZT values of different samples, and the comparison with the ZT values of ternary p-type Bi2Te3 reported in the literature.

    表 1  热压样品和挤压样品的室温物理性能参数

    Table 1.  Room temperature physical performance parameters of hot pressed sintered samples and vertical angular pressing samples.

    Sampleσ/(104 S·m–1)S/(μV·K–1)n/(1019 cm–3)μ/(cm2·V–1·s–1)PF/(mW·m–1·K–2)m*/m0
    HP10.9157.64.02144.12.721.13
    673 K-HE9.6179.52.99224.63.111.11
    698 K-HE10.6189.62.60252.23.831.10
    723 K-HE10.5204.22.24274.34.401.12
    748 K-HE10.1205.42.15308.54.261.10
    773 K-HE8.6226.91.71345.44.431.12
    下载: 导出CSV
  • [1]

    Wei J T, Yang L L, Ma Z, Song P S, Zhang M L, Ma J, Yang F H, Wang X D 2020 J. Mater. Sci. 55 12642Google Scholar

    [2]

    Shi X L, Zou J, Chen Z G 2020 Chem. Rev. 120 7399Google Scholar

    [3]

    Xie H Y, Zhao L D, Kanatzidis M G 2023 Interdiscip. Mater. 3 5

    [4]

    Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024 Interdiscip. Mater. 3 326

    [5]

    Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F P, Zhang Q J, Tang X F 2024 Mater. Today Phys. 46 101524Google Scholar

    [6]

    Cao W Q, Lyu J N, Wang Z A, Zhang M Q, Yan Y G, Yang D W, Tang X F 2025 ACS Appl. Mater. Interfaces 17 14301Google Scholar

    [7]

    Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191

    [8]

    Huang B, Yang X Q, Liu L S, Zhai P C 2015 J. Electron. Mater. 44 1668Google Scholar

    [9]

    Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820Google Scholar

    [10]

    Cheng Y D, Cojocaru-Miredin O, Keutgen J, Yu Y, kupers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316Google Scholar

    [11]

    李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰 2024 物理学报 73 097101Google Scholar

    Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024 Acta Phys. Sin. 73 097101Google Scholar

    [12]

    Fu K, Yu J, Wang B, Nie X L, Zhu W T, Wei P, Zhao W Y, Zhang Q J 2024 J. Mater. Sci. -Mater. Electron. 35 319Google Scholar

    [13]

    Zhang W W, Liu X, Tian Z G, Zhang Y J, Li X J, Song H Z 2023 J. Electron. Mater. 52 6682Google Scholar

    [14]

    Huang W J, Tan X J, Cai J F, Zhuang S, Zhou C D, Wu J H, Liu G Q, Liang B, Jiang J 2023 Mater. Today Phys. 32 101022Google Scholar

    [15]

    Ivanov O, Yaprintsev M, Yaprintseva E, Nickulicheva T, Vasil’ev A 2024 Phys. Scr. 99 025913Google Scholar

    [16]

    Zhan R Y, Lyu J N, Yang D W, Liu Y T, Hua S H, Xu Z M, Wang C, Peng X, Yan Y G, Tang X F 2022 Mater. Today Phys. 24 100670Google Scholar

    [17]

    Paul S, Pal U, Pradhan S K 2022 Mater. Chem. Phys. 279 125736Google Scholar

    [18]

    Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191

    [19]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331Google Scholar

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331Google Scholar

    [20]

    Wang X L, Shang H J, Gu H W, Chen Y T, Zhang Z H, Zou Q, Zhang L, Feng C P, Li G C, Ding F Z 2024 ACS Appl. Mater. Interfaces 16 11147Google Scholar

    [21]

    He Q L, Yang D L, Zhang W W, Song H Z 2024 Mod. Phys. Lett. B 38 2450224

    [22]

    Guo Y T, Du J Y, Hu M H, Wei B, Su T C, Zhou A G 2023 J. Mater. Sci. -Mater. Electron. 34 685Google Scholar

    [23]

    Park G M, Lee S, Kang J Y, Baek S H, Kim H, Kim J S, Kim S K 2023 J. Adv. Ceram. 12 2360Google Scholar

    [24]

    Liu H Y, Zheng P L, Cai J M, Zhu B, Xu W B, Zheng Y 2023 ACS Appl. Energy Mater. 7 11269

    [25]

    Zhu B, Luo Y, Wu H Y, Sun D, Liu L, Shu S C, Luo Z Z, Zhang Q, Suwardi A, Zheng Y 2023 J. Mater. Chem. A 11 8912Google Scholar

    [26]

    Joo S J, Son J H, Jang J, Min B K, Kim B S, Hong J, Lee D K, Kim H 2024 Korean J. Met. Mater. 62 796Google Scholar

    [27]

    Zhou J, Feng J H, Li H, Liu D, Qiu G J, Qiu F, Li J, Luo Z Z, Zou Z G, Sun R, Liu R H 2023 Small 19 2300654Google Scholar

    [28]

    Lu T B, Wang B Y, Li G D, Yang J W, Zhang X F, Chen N, Liu T H, Yang R G, Niu P J, Kan Z X, Zhu H T, Zhao H Z 2023 Mater. Today Phys. 32 101035Google Scholar

    [29]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 物理学报 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin 72 097101Google Scholar

    [30]

    Li S K, Zha W G, Cheng Y J, Chen L, Xu M X, Guo K, Pan F 2023 ACS Appl. Mater. Interfaces 15 1167Google Scholar

    [31]

    Jiang Z S, Ming H W, Qin X Y, Feng D, Zhang J, Song C J, Li D, Xin H X, Li J C, He J Q 2020 ACS Appl. Mater. Interfaces 12 46181Google Scholar

    [32]

    Qiu J H, Yan Y G, Luo T T, Tang K C, Yao L, Zhang J, Zhang M, Su X L, Tan G J, Xie H Y, Kanatzidis M G, Uher C, Tang X F 2019 Energy Environ. Sci. 12 3106Google Scholar

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, doi: 10.7498/aps.73.20240145
    [2] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, doi: 10.7498/aps.71.20220179
    [3] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, doi: 10.7498/aps.71.20220584
    [4] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, doi: 10.7498/aps.70.20210801
    [5] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, doi: 10.7498/aps.69.20191561
    [6] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, doi: 10.7498/aps.68.20190394
    [7] 周康, 袁从龙, 李萧, 王骁乾, 沈冬, 郑致刚. 蓝相液晶指向有序的定域化及微结构制备. 物理学报, doi: 10.7498/aps.67.20172517
    [8] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, doi: 10.7498/aps.63.148102
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, doi: 10.7498/aps.62.036801
    [10] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, doi: 10.7498/aps.62.118101
    [11] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, doi: 10.7498/aps.61.167201
    [12] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [13] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.61.148101
    [14] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 物理学报, doi: 10.7498/aps.60.036107
    [15] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, doi: 10.7498/aps.59.2860
    [16] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, doi: 10.7498/aps.59.6666
    [17] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, doi: 10.7498/aps.57.6488
    [18] 甄聪棉, 马 丽, 张金娟, 刘 英, 聂向富. Ti(Cr)缓冲层对用于垂直磁记录材料CoCrTa介质磁特性和微结构的影响. 物理学报, doi: 10.7498/aps.56.1730
    [19] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, doi: 10.7498/aps.54.416
    [20] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, doi: 10.7498/aps.54.2172
计量
  • 文章访问数:  213
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-08
  • 修回日期:  2025-04-08
  • 上网日期:  2025-04-14

/

返回文章
返回