搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维准周期缺陷原子晶格中非互易光反射

徐琼怡 张津 郑怡婷 严冬 张焓笑 杨红

引用本文:
Citation:

一维准周期缺陷原子晶格中非互易光反射

徐琼怡, 张津, 郑怡婷, 严冬, 张焓笑, 杨红

The nonreciprocal reflection in one-dimensional quasi-periodic defective atomic lattice

Xu Qiong-Yi, Zhang Jin, Zheng Yi-Ting, Yan Dong, Zhang Han-Xiao, Yang Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光学非互易性因其能够有效地用于全光二极管、隔离器等新型光子器件的设计,近年来相关研究备受关注。我们小组在工作[Physical Review Reasearch 6 ,023122(2024)]中提出利用晶格缺陷打破极化率空间对称性实现了非互易光反射,该工作中缺陷是由固定数量空晶格周期性调制的。为了进一步展开缺陷原子晶格中非互易光传播特性的研究,我们创新性地提出用斐波那契数列调控空晶格的排布规律,构成准周期缺陷原子晶格系统,实现了探测光左右反射非互易的操控。分析了单个准周期中满晶格数量、斐波那契数列和准周期数对非互易反射的优化过程以及产生影响的物理实质,并讨论了耦合场失谐对非互易频率域和带宽的调制。这些结果为宽频、对比度高的非互易光反射的调控提供了更多的自由度,在量子计算和信息处理领域具有潜在的应用。
    In order to further investigate the non-reciprocity of light propagation in the defective atomic lattices, due to its effective application in designing novel photonic devices, such as all-optical diodes and isolators, which are powerful tools for information processing and quantum simulation. We innovatively propose to use the Fibonacci sequence to modulate the arrangement of vacant lattice cells forming a quasi periodic defective atomic lattices. In the electromagnetically induced transparency window, the probe light is almost not absorbed with the control of a strong coupling field [see Fig. 1]. The numerical simulation indicates that a wide nonreciprocal reflection band can be achieved by modulating the number of filled lattice cells, Fibonacci sequence, the period number in a single quasi period [see Fig. 2]. These results provide more degrees of freedom for the regulation of nonreciprocal reflection with wide bandwidth and high contrast, and have potential applications in quantum computing and information processing.
  • [1]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143.

    [2]

    Prabu K, Nasre D 2019 Plasmonics 14 1261.

    [3]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602.

    [4]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828.

    [5]

    Chan E H W 2014 Opt. Commun. 324 127.

    [6]

    Litinskaya M, Shapiro E A 2015 Phys. Rev. A 91 033802.

    [7]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826.

    [8]

    Wu J, Wang Z M, Zhai H, Shi Z X, Wu X H, Wu F 2021 Opt. Mater. Express 11 4058.

    [9]

    Wang Z Y, Qian J, Wang Y P, Li J, You J Q 2023 Appl. Phys. Lett. 123 153904.

    [10]

    Chakraborty S, Das C 2023 Phys. Rev. A 108 063704.

    [11]

    Wang Y M, Xiong W, Xu Z Y, Zhang G Q, You J Q 2022 Science China Physics, Mechanics & Astronomy 65 260314.

    [12]

    He X W, Wang Z Y, Han X, Zhang S, Wang H F 2023 Opt. Express 31 43506.

    [13]

    Yang Y, Guan B, Zhang C L, Liu L C, Liu K 2020 Optoelectronic Science and Materials 11606 74.

    [14]

    Kim M K 2015 Opt. Express 23 2040.

    [15]

    Kawaguchi Y, Alù A, Khanikaev A B 2022 Opt. Mater. Express 12 1453.

    [16]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774.

    [17]

    Fleury R, Sounas D L, Alù A 2018 Journal of Optics 20 034007.

    [18]

    Cardin A E, Silva S R, Vardeny S R, Padilla W J, Saxena A, Taylor A J, Kort-Kamp W J M, Chen H T, Dalvit D A R, Azad A K 2020 Nat. Commun. 11 1469.

    [19]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613.

    [20]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91.

    [21]

    Rodriguez S R K, Goblot V, Zambon N C, Amo A, Bloch J 2019 Phys. Rev. A 99 013851.

    [22]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657.

    [23]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662.

    [24]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B , Painter O, Fink J M 2017 Nat. Commun. 8 953.

    [25]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604.

    [26]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604.

    [27]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744.

    [28]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902.

    [29]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890.

    [30]

    Guo T J, Argyropoulos C 2022 Phys. Rev. B 106 235418.

    [31]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704.

    [32]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436.

    [33]

    Pei X S, Zhang H X, Pan M M, Geng Y, Li T M, Yang H 2023 Opt. Express 31 14694.

    [34]

    Peng P S, Thapa G, Zhou J F, Talbayev D 2023 Optica 10 155.

    [35]

    Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alù A, Menon V M, Khanikaev A B 2021 Nat. Commun. 12 3746.

    [36]

    Gao W T, Yang C W, Tan Y T, Ren J 2022 Appl. Phys. Lett. 121 071702.

    [37]

    Chamanara N, Taravati S, Deck-Léger Z L, Caloz C 2017 Phys. Rev. B 96 155409.

    [38]

    Hack S A, van der Vegt J J W, Vos W L 2019 Phys. Rev. B 99 115308.

    [39]

    Yoon T, Bajcsy M 2019 Phys. Rev. A 99 023415.

    [40]

    Yang H, Zhang T G, Zhang Y, Wu J H 2020 Phys. Rev. A 101 053856.

    [41]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862.

    [42]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604.

    [43]

    Li T M, Wang M H, Yin C P, Wu J H, Yang H 2021 Opt. Express 29 31767.

    [44]

    Yang H, Yang L, Wang X C, Cui C L, Zhang Y, Wu J H 2013 Phys. Rev. A 88 063832.

    [45]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811.

    [46]

    Chaung Y L, Shamsi A, Abbas M, Ziauddin 2020 Opt. Express 28 1701.

    [47]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859.

    [48]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901.

    [49]

    Wang C Q, Jiang X F, Zhao G M, Zhang M Z, Hsu C W, Peng B, Stone A D, Jiang L, Yang L 2020 Nat. Phys. 16 334.

    [50]

    Finkelstein R, Bali S, Firstenberg O, Novikova I 2023 New Journal of Physics 25 035001.

    [51]

    Liu J J, Liu J C, Zhang G Q 2023 Acta Phys. Sin. 72 094201 (刘建基,刘甲琛,张国权 2023 物理学报 72 094201)

    [52]

    Li T M, Yang H, Wang M H, Yin C P, Zhang T G, Zhang Y 2024 Phys. Rev. Res. 6 023122.

    [53]

    Yuan J P, Wu C H, Wang L R, Chen G, Jia S T 2019 Opt. Lett. 44 4123.

    [54]

    Yuan J P, Zhang H F, Wu C H, Wang L R, Xiao L T, Jia S T 2021 Opt. Lett. 46 4184.

    [55]

    Yuan J P, Zhang H F, Wu C H, Chen G, Wang L R, Xiao L T, Jia S T 2023 Laser & Photonics Reviews 17 2200667.

    [56]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809.

    [57]

    Kuraptsev A S, Sokolov I M 2015 Phys. Rev. A 91 053822.

    [58]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905.

    [59]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111.

  • [1] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, doi: 10.7498/aps.74.20241565
    [2] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 物理学报, doi: 10.7498/aps.74.20241364
    [3] 张慧玲, 谢中柱, 郝佳瑞, 房勇. 室温下铯原子体系光学非互易调控实验研究. 物理学报, doi: 10.7498/aps.74.20241463
    [4] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, doi: 10.7498/aps.73.20231850
    [5] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, doi: 10.7498/aps.73.20240917
    [6] 李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红. 闭合回路相干增益原子系统中完美非互易反射光放大. 物理学报, doi: 10.7498/aps.73.20240347
    [7] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, doi: 10.7498/aps.73.20231566
    [8] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子. 物理学报, doi: 10.7498/aps.71.20211733
    [9] 杨树政, 林恺. 洛仑兹破缺标量场的霍金隧穿辐射. 物理学报, doi: 10.7498/aps.68.20182050
    [10] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, doi: 10.7498/aps.66.220201
    [11] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, doi: 10.7498/aps.66.127303
    [12] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, doi: 10.7498/aps.59.3992
    [13] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, doi: 10.7498/aps.58.3799
    [14] 鲁公儒, 李 祥, 李培英. R-宇称破缺的相互作用研究. 物理学报, doi: 10.7498/aps.57.778
    [15] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应. 物理学报, doi: 10.7498/aps.49.339
    [16] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解. 物理学报, doi: 10.7498/aps.45.133
    [17] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数. 物理学报, doi: 10.7498/aps.42.214
    [18] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象. 物理学报, doi: 10.7498/aps.41.1987
    [19] 范海福, 古元新. 求解非中心对称晶体结构的人工相位退化法(Ⅱ)——试解P21空间群含重原子的复杂晶体结构. 物理学报, doi: 10.7498/aps.31.969
    [20] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, doi: 10.7498/aps.25.53
计量
  • 文章访问数:  176
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-08

/

返回文章
返回