搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热稠密等离子体中Fe25+离子光电离截面的低能特征

路思梅 周福阳 高翔 吴勇 王建国

引用本文:
Citation:

热稠密等离子体中Fe25+离子光电离截面的低能特征

路思梅, 周福阳, 高翔, 吴勇, 王建国

Low-energy characteristics of photoionization cross section for Fe25+ ion embedded in hot dense plasma

LU Simei, ZHOU Fuyang, GAO Xiang, WU Yong, WANG Jianguo
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用原子态分辨(atomic-state-dependent, ASD)屏蔽模型, 研究了热稠密等离子体中Fe25+离子光电离截面的低能特征. 等离子体屏蔽会减弱核和束缚电子之间的相互作用, 导致束缚电子逐渐进入连续态. 对于光电离过程, 屏蔽效应改变束缚和连续电子的波函数, 进一步改变重叠积分和跃迁矩阵元, 最终引起截面出现低能特征. 相比于传统的德拜模型, ASD模型进一步考虑了电子简并效应和非弹性碰撞过程的影响, 能够更加准确地描述温热稠密等离子体的屏蔽效应. 基于ASD模型, 研究发现, 低能阈值区, 截面服从Wigner阈值定律; 能量逐渐增大时截面出现低能增强、势形共振、Cooper极小、Combet-Farnoux极小等低能特征, 导致对应能区的截面显著增大或减小, 继而改变光电子谱的性质. 本工作研究了热稠密等离子体中离子的光电离过程, 可以为天体和实验室中热稠密等离子体的研究提供理论和数据支持.
    Complex multi-body interactions between ions and surrounding charged particles exist in hot and dense plasmas, and they can screen the Coulomb potential between the nucleus and electrons and significantly change the atomic structures and dynamic properties, thereby further affecting macroscopic plasma properties such as radiation opacity and the equation of state. Using the atomic-state-dependent (ASD) screening model, we investigate the photoionization dynamics of Fe25+ ions in hot and dense plasma. The photoionization cross section for all transition channels and total cross sections of n ≤ 2 states for Fe25+ ions are studied in detail, and the low-energy characteristics induced by plasma screening are also investigated. Compared with the classical Debye Hückel model, the ASD model introduces degeneracy effects through inelastic collision processes, resulting in higher plasma density requirements for bound electrons to merge into the continuum. Near the threshold, the photoionization cross section obeys the Wigner threshold law after considering the screening effect. As the energy increases, the cross sections show low-energy characteristics such as shape resonance, Cooper minimum, low-energy enhancement, and Combet-Farnoux minimum, which can significantly increase or reduce the cross section of the corresponding energy region. For example, the low-energy enhancement in the 2p→εs1/2 channel increases the cross section by several orders of magnitude, drastically changing the properties of the photoelectron spectrum. It is significant to study the low-energy characteristics for understanding the physical properties of the photoionization cross section. Fe is an important element in astrophysics. The cross section results in the medium and high energy regions calculated by the ASD model in this work can provide theoretical and data support for investigating hot and dense plasmas in astrophysics and laboratory.
  • 图 1  Fe25+离子基态的势能, Te = 200 eV, isolated表示孤立Fe25+离子的势能

    Fig. 1.  Potential energy V(r) of Fe25+ ion at four electron densities ne and the temperature Te = 200 eV, the potential energy of the free Fe25+ ion is also plotted and represented as isolated.

    图 2  采用ASD模型得到的εp1/2(实线), εp3/2(虚线)的连续波函数, Te = 200 eV

    Fig. 2.  The radial wavefunction of εp1/2 (solid lines), εp3/2 (dashed lines)of continuous electrons from the ASD model, the electron temperature Te = 200 eV.

    图 3  Fe25+离子基态及n ≤ 3激发态标度能级随电子密度的变化, 实线为ASD模型的结果, 虚线为Xie等[23]采用DH模型的计算结果

    Fig. 3.  Scaled energies of ground and n ≤ 3 excited states of Fe25+ ion as a function of electron density for a fixed plasma temperature Te = 200 eV, the solid line is the result of ASD model, and the dotted line is the calculation result from DH model adopted by Xie et al.[23].

    图 4  不同等离子体密度时Fe25+离子的基态光电离截面 (a) 1s总截面; (b) 1s→εp1/2; (c) 1s→εp3/2; 温度Te = 200 eV

    Fig. 4.  Behavior of (a) total 1s1/2, (b) individual 1s→εp1/2, and (c) 1s→εp3/2 photoionization cross sections of the Fe25+ ion as functions of the photoelectron energy for the plasma with temperature Te = 200 eV.

    图 5  不同等离子体密度时Fe25+离子2s激发态的光电离截面 (a) 2s1/2总截面; (b) 2s1/2εp1/2; (c) 2s1/2εp3/2; 温度Te = 200 eV

    Fig. 5.  Behavior of (a) total 2s1/2, (b) individual 2s1/2εp1/2, and (c) 2s1/2εp3/2 photoionization cross sections of the Fe25+ ion as functions of the photoelectron energy for a plasma with temperature Te = 200 eV.

    图 6  Fe25+离子2s1/2激发态密度为 (a) 5.8×1024 cm–3, (b) 7.99×1027 cm–3和 (c) 9.8×1027 cm–3的偶极矩阵元, 温度Te = 200 eV

    Fig. 6.  Dipole matrix elements of 2s1/2 excited state of Fe25+ ion with densities (a) 5.8×1024 cm–3, (b) 7.99×1027 cm–3, and (c) 9.8×1027 cm–3. Te = 200 eV.

    图 7  不同等离子体密度时Fe25+离子 (a) 2p1/2总截面, (b) 2p1/2εs1/2截面以及(c) 2p1/2εd3/2光电离截面, 温度Te = 200 eV

    Fig. 7.  Behavior of (a) total 2p1/2, (b) individual 2p1/2εs1/2, and (c) 2p1/2εd3/2 photoionization cross sections of the Fe25+ ion as functions of the photoelectron energy for the plasma with temperature Te = 200 eV.

    图 8  Fe25+离子εs1/2连续电子波函数的径向大分量, 温度Te = 200 eV

    Fig. 8.  Large component of radial wavefunctions of εs1/2 continuous electron. Here the electron temperature is 200 eV.

    图 9  不同等离子体密度时Fe25+离子2p3/2激发态的光电离截面 (a) 2p3/2总截面; (b) 2p3/2εs1/2; (c) 2p3/2εd3/2; (d) 2p3/2εd5/2; 温度Te = 200 eV

    Fig. 9.  Behavior of (a) total 2p3/2, (b) individual 2p3/2εs1/2, (c) 2p3/2εd3/2, and (d) 2p3/2εd5/2 photoionization cross sections of the Fe25+ ion as functions of the photoelectron energy for the plasma with temperature Te = 200 eV.

  • [1]

    Astapenko V A, Lisitsa V S 2024 Matter Radiat. Extremes 9 1

    [2]

    Alkhimova M, Skobelev I, Pikuz T, Ryazantsev S, Sakaki H, Pirozhkov A S, Esirkepov T Z, Sagisaka A, Dover N P, Kondo K, Ogura K, Fukuda Y, Kiriyama H, Nishitani K, Pikuz S, Kando M, Kodama R, Kondo K, Nishiuchi M 2024 Matter Radiat. Extremes 9 1

    [3]

    Berrington K A, Burke P G, Butler K, Seaton M J, Storey P J, Taylor K T, Yan Y 1987 J. Phys. B: At. Mol. Phys. 20 6379Google Scholar

    [4]

    Hummer D G, Berrington K A, Eissner W, Pradhan A K, Saraph H E, Tully J A 1993 A& A 279 298

    [5]

    Tong X M, Li J M, Pratt R H 1990 Phys. Rev. A 42 5348Google Scholar

    [6]

    Zhao L B, Ho Y K 2004 Phys. Plasmas 11 1695Google Scholar

    [7]

    Debye P, Hückel E 1923 Phys. Z. 24 185

    [8]

    Salzmann D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press

    [9]

    Sahoo S, Ho Y K 2006 Phys. Plasmas 13 063301Google Scholar

    [10]

    Qi Y Y, Wang J G, Janev R K 2009 Phys. Rev. A 80 063404Google Scholar

    [11]

    Lin C Y, Ho Y K 2010 Phys. Plasmas 17 093302Google Scholar

    [12]

    Wu C S, Zhou F Y, Yan J, Gao X, Wu Y, Zeng C H, Wang J G 2024 Chin. Phys. Lett. 41 085202Google Scholar

    [13]

    Zhou F Y, Qu Y Z, Gao J W, Ma Y L, Wu Y, Wang J G 2021 Commun. Phys. 4 1Google Scholar

    [14]

    Lu S M, Zhou F Y, Xie L Y, Ma Y L, Zhao G P, Gao X, Wu Y, Wang J G 2024 Phys. Rev. E 109 055205Google Scholar

    [15]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [16]

    Zhou F 2021

    [17]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [18]

    Jönsson P, He X, Froese Fischer C, Grant I P 2007 Comput. Phys. Commun. 177 597Google Scholar

    [19]

    Tews M G, Perger W F 2001 Comput. Phys. Commun. 141 205Google Scholar

    [20]

    Perger W F, Halabuka Z, Trautmann D 1993 Comput. Phys. Commun. 76 250Google Scholar

    [21]

    Grant I P 1974 J. Phys. B: Aom. Molec. Phys. 7 1458Google Scholar

    [22]

    Zhao G P, Xie L Y, Liu L, Wang J G, Janev R K 2018 Phys. Plasmas 25 1

    [23]

    Xie L Y, Wang J G, Janev R K 2014 Phys. Plasmas 21 1

    [24]

    Bethe H A, Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (New York: Academic Press

    [25]

    Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441Google Scholar

    [26]

    Wigner E P 1948 Phys. Rev. 73 1002Google Scholar

    [27]

    Bylicki M, Stachów A, Karwowski J, Mukherjee P K 2007 Chem. Phys. 331 346Google Scholar

    [28]

    Joachain 1975 Quantum Collision Theory (New York: American Elsevier

    [29]

    Taylor J R 1972 Scattering Theory (New York: John Wiley

  • [1] 林成亮, 何斌, 吴勇, 王建国. 动态响应和屏蔽效应对稠密等离子体中电子离子能量弛豫的影响. 物理学报, doi: 10.7498/aps.74.20241588
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, doi: 10.7498/aps.73.20240016
    [3] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究. 物理学报, doi: 10.7498/aps.73.20231625
    [4] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究. 物理学报, doi: 10.7498/aps.72.20222339
    [5] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, doi: 10.7498/aps.71.20220421
    [6] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, doi: 10.7498/aps.68.20181915
    [7] 谭胜, 吴建军, 黄强, 张宇, 杜忻洳. 基于双相延迟模型的飞秒激光烧蚀金属模型. 物理学报, doi: 10.7498/aps.68.20182099
    [8] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性. 物理学报, doi: 10.7498/aps.62.095201
    [9] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算. 物理学报, doi: 10.7498/aps.60.053202
    [10] 丁丁, 何斌, 刘玲, 张程华, 王建国. 等离子体屏蔽对He2+与H原子碰撞电离微分截面的影响. 物理学报, doi: 10.7498/aps.58.8419
    [11] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, doi: 10.7498/aps.58.5274
    [12] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应. 物理学报, doi: 10.7498/aps.57.2152
    [13] 李永强, 吴建华, 袁建民. 等离子体屏蔽效应对原子能级和振子强度的影响. 物理学报, doi: 10.7498/aps.57.4042
    [14] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, doi: 10.7498/aps.54.807
    [15] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 物理学报, doi: 10.7498/aps.54.1149
    [16] 仝晓民. Xe原子离子4d→f跃迁光电离截面延迟峰的研究. 物理学报, doi: 10.7498/aps.40.693
    [17] 王龙, 罗耀全, 李赞良, 王文书, 杨思泽, 李文莱, 戚霞枝, 赵华. 托卡马克微波预电离等离子体. 物理学报, doi: 10.7498/aps.38.714
    [18] 冯贤平, 徐至展, 江志明, 张正泉, 陈时胜, 范品忠, 田莉, 周智锦. 等离子体中高阶电离离子的空间分布. 物理学报, doi: 10.7498/aps.37.1183
    [19] 刘磊, 仝晓民, 李家明. 离化态铁原子光电离截面研究. 物理学报, doi: 10.7498/aps.37.1800
    [20] 陆全康, 陈之范. 各向异性等离子体中的静电屏蔽. 物理学报, doi: 10.7498/aps.31.252
计量
  • 文章访问数:  216
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-11
  • 修回日期:  2025-03-12
  • 上网日期:  2025-04-01

/

返回文章
返回