搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无限层镍基超导薄膜界面结构的电子显微学研究

李泊玉 胡柯钧 林仁菊 韩昆 黄振 葛炳辉 宋东升

引用本文:
Citation:

无限层镍基超导薄膜界面结构的电子显微学研究

李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升

Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films

LI Boyu, HU Kejun, LIN Renju, HAN Kun, HUANG Zhen, GE Binghui, SONG Dongsheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 无限层镍氧化物Nd0.8Sr0.2NiO2薄膜中超导电性的发现, 建立了另一类非常规超导体, 其结构和电子配对方式和铜氧化物超导体类似. 不同于铜氧化物超导体的是, 无限层镍氧化物仅在薄膜样品中观察到了超导性, 其中界面结构、元素掺杂和无限层结构等因素是理解薄膜超导机制的关键. 因此, 薄膜与衬底之间的界面效应对超导机制的影响值得我们探究, 然而目前对超导和非超导的镍氧化物Nd0.8Sr0.2NiOx薄膜界面结构的对比研究还没有报道过. 本文基于扫描透射电镜技术, 以Nd0.8Sr0.2NiO3/SrTiO3和Nd0.8Sr0.2NiO2/SrTiO3为主要研究对象, 探究了镍氧化物Nd0.8Sr0.2NiOx薄膜在还原前后相分布和界面结构产生的变化, 观测到界面处元素混合、原子台阶以及晶格常数变化等现象, 同时发现了镍氧化物Nd0.8Sr0.2NiO2薄膜在靠近界面处1—2层单胞内未被完全还原成超导无限层结构. 本研究强调了镍氧化物Nd0.8Sr0.2NiOx薄膜与衬底之间界面的原子重构及调制作用, 为无限层镍基薄膜超导结构的研究提供了帮助.
    The discovery of superconductivity in infinite-layer nickelate Nd0.8Sr0.2NiO2 has established another type of unconventional superconductors, whose structure and electron pairing mechanism are similar to those of cuprate superconductors. Unlike in cuprate superconductors, superconductivity in infinite-layer nickelates has only been observed in thin film samples, where heterointerface structures, elemental doping, and the infinite-layer configuration are critical for epitaxial systems. Therefore, the film-substrate interfacial effects require exploration for understanding superconductivity. However, comparative studies on the interfacial structures between superconducting and non-superconducting Nd0.8Sr0.2NiOx nickelate thin films have not been reported in the literature so far.This work focuses on Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3, and the phase distribution and interfacial structural changes in superconducting and non-superconducting nickelate thin films are characterized in detail by using scanning transmission electron microscopy (STEM). Further analysis of the corresponding atomic HAADF, iDPC images and EDS maps reveals the phenomena such as elements mixing, atomic steps, and changes in lattice parameters at the interfaces. These results also show that in the Nd0.8Sr0.2NiO2 film, the first 1—2 unit cells near the interface are not fully reduced to the superconducting infinite-layer structure. Such findings contribute to alleviating the strong polarity discontinuity at the sharp interface.This study also emphasizes the atomic reconstruction and the modulation effect at the interface between the substrate and the film, thus enriching the understanding of the structural properties of the Nd0.8Sr0.2NiOx films, and providing crucial experimental evidence for understanding the interfacial structure of infinite-layer nickelates.
  • 图 1  (a), (b) Nd0.8Sr0.2NiO3/SrTiO3原子模型图及对应的HAADF图像; (c), (d) Nd0.8Sr0.2NiO2/SrTiO3原子模型图及对应的HAADF图像; (e) Nd0.8Sr0.2NiO2/SrTiO3, Nd0.8Sr0.2NiO3/SrTiO3的电阻率随温度的变化; (f), (g) 分别为Nd0.8Sr0.2NiO2/SrTiO3, Nd0.8Sr0.2NiO3/SrTiO3的几何相位图, 黄框标记的为RP相区域

    Fig. 1.  (a), (b) Atomic structure model and HAADF image of the Nd0.8Sr0.2NiO3/SrTiO3; (c), (d) the atomic structure model and HAADF image of the Nd0.8Sr0.2NiO2/SrTiO3; (e) the temperature-dependent resistivity profile of Nd0.8Sr0.2NiO2/SrTiO3 and Nd0.8Sr0.2NiO3/SrTiO3; (f), (g) the geometric phase analysis of Nd0.8Sr0.2NiO2/SrTiO3 and Nd0.8Sr0.2NiO3/SrTiO3, the RP phase regions marked by yellow boxes.

    图 2  (a) Nd0.8Sr0.2NiO3/STO界面[100]取向的HAADF图像及相应的EDS分布图; (b) 图(a)对应的EDS积分强度分析图; (c) Nd0.8Sr0.2NiO2/STO界面[100]取向HAADF图像及相应的EDS分布图; (d) 图(c)对应的EDS积分强度分析图

    Fig. 2.  (a) HAADF image at [100] orientation of the Nd0.8Sr0.2NiO3/STO interface and corresponding EDS mapping images; (b) the EDS integrated line intensity analysis corresponding to panel (a); (c) the HAADF image at [100] orientation of the Nd0.8Sr0.2NiO2/STO interface and corresponding EDS mapping images; (d) the EDS intensity analysis corresponding to panel (c).

    图 3  (a) Nd0.8Sr0.2NiO3/SrTiO3沿[100]方向HAADF和iDPC图像; (b) Nd0.8Sr0.2NiO2/SrTiO3沿[100]方向HAADF和iDPC图像; (c) Nd0.8Sr0.2NiO2/SrTiO3界面处原子台阶HAADF图像; (d) Nd0.8Sr0.2NiO2/SrTiO3界面处面内a和面外c晶格常数在空间上的变化; (e) 1, 2, 3三个区域对应的放大iDPC图和原子模型图

    Fig. 3.  (a) HAADF and iDPC images in the direction of [100] of the Nd0.8Sr0.2NiO3/SrTiO3; (b) HAADF and iDPC images in the direction of [100] of the Nd0.8Sr0.2NiO2/SrTiO3; (c) HAADF image of atomic steps appear at the Nd0.8Sr0.2NiO2/SrTiO3 interface; (d) spatial variation of the in-plane (a) and out-of-plane (c) lattice parameters across the Nd0.8Sr0.2NiO2/SrTiO3; (e) the magnified iDPC images and structure model corresponding to regions 1, 2 and 3.

    图 4  (a), (c) Nd0.8Sr0.2NiO3/SrTiO3, Nd0.8Sr0.2NiO2/SrTiO3薄膜沿[100]带轴的HAADF图像; (b), (d) Nd0.8Sr0.2NiO3/SrTiO3, Nd0.8Sr0.2NiO2/SrTiO3沿面内和面外方向的晶格常数随位置的变化

    Fig. 4.  (a), (c) HAADF images of the Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3 films along the [100] axis; (b), (d) variation of the lattice constants along the in-plane and out-of-plane directions as a function of position for Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3 films.

  • [1]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [2]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [3]

    Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D F, Hwang H Y, Pentcheva R, Kourkoutis L F 2023 Nat. Mater. 22 466Google Scholar

    [4]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [5]

    Crespin M, Levitz P, Gatineau L 1983 J. Chem. Soc. , Faraday Trans. 79 1181Google Scholar

    [6]

    Hayward M A, Green M A, Rosseinsky M J, Sloan J 1999 J. Am. Chem. Soc. 121 8843Google Scholar

    [7]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [8]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [9]

    Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, Hepting M 2021 Sci. Adv. 7 eabl8091Google Scholar

    [10]

    Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486Google Scholar

    [11]

    Li Q, He C P, Si J, Zhu X Y, Zhang Y, Wen H H 2020 Commun. Mater. 1 16Google Scholar

    [12]

    Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F 2020 Phys. Rev. Mater. 4 084409Google Scholar

    [13]

    Lee Y, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth. DOI: 10.1038/s44160-024-00714-2

    [14]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S 2023 Nature 621 493Google Scholar

    [15]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [16]

    Zhou G D, Lü W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K 2025 Nature 640 641Google Scholar

    [17]

    Bernardini F, Olevano V, Blase X, Cano A 2020 J. Phys. Mater. 3 035003Google Scholar

    [18]

    Geisler B, Pentcheva R 2020 Phys. Rev. B 102 020502Google Scholar

    [19]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003Google Scholar

    [20]

    Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, Hwang H Y 2020 APL Mater. 8 041107Google Scholar

    [21]

    Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y, Yamamoto T 2011 Appl. Phys. Lett. 99 033110Google Scholar

    [22]

    Bak J, Bae H B, Kim J, Oh J, Chung S Y 2017 Nano Lett. 17 3126Google Scholar

    [23]

    Goodge B H, Li D F, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, Kourkoutis L F 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2007683118Google Scholar

    [24]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

  • [1] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望. 物理学报, doi: 10.7498/aps.74.20250331
    [2] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, doi: 10.7498/aps.70.20202072
    [3] 拱越, 谷林. 全固态电池中界面的结构演化和物质输运. 物理学报, doi: 10.7498/aps.69.20201160
    [4] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, doi: 10.7498/aps.67.20180731
    [5] 黎栋栋, 周武. 二维原子晶体的低电压扫描透射电子显微学研究. 物理学报, doi: 10.7498/aps.66.217303
    [6] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, doi: 10.7498/aps.64.078101
    [7] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, doi: 10.7498/aps.64.217402
    [8] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, doi: 10.7498/aps.63.117303
    [9] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究. 物理学报, doi: 10.7498/aps.60.037402
    [10] 温才, 李方华, 邹进, 陈弘. AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, doi: 10.7498/aps.59.1928
    [11] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, doi: 10.7498/aps.58.5632
    [12] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, doi: 10.7498/aps.50.550
    [13] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, doi: 10.7498/aps.50.1193
    [14] 高义华, 张 泽, 阎明朗, 赖武彦. NiFe/Mo多层膜界面的电子显微学研究. 物理学报, doi: 10.7498/aps.47.765
    [15] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, doi: 10.7498/aps.43.1152
    [16] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, doi: 10.7498/aps.42.482
    [17] 赵建国, 李方华, 陈维, 解思深, 曹宁, 郑家祺. Nd-Ba-Cu-O高温超导体的高分辨电子显微术研究. 物理学报, doi: 10.7498/aps.38.508
    [18] 孔庆平, 王翔, 周浩, 倪群慧. 蠕变-疲劳交互作用的电子显微学研究. 物理学报, doi: 10.7498/aps.35.1091
    [19] 李方华, 汤栋. 高分辨电子显微学中的赝弱相位物体近似. 物理学报, doi: 10.7498/aps.33.1196
    [20] 孔庆平, 龙起易. 用电子显微镜透射方法研究一种镍基合金高温蠕变过程的位错结构. 物理学报, doi: 10.7498/aps.24.83
计量
  • 文章访问数:  214
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-11
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-19

/

返回文章
返回