搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态高功率深紫外皮秒激光器

欧佐元 徐思志 刘星 高瑜博 陈俊展 和星宇 卢浩天 吴宠昊 郭春雨 郭丽 吴旭 吕启涛 阮双琛

引用本文:
Citation:

全固态高功率深紫外皮秒激光器

欧佐元, 徐思志, 刘星, 高瑜博, 陈俊展, 和星宇, 卢浩天, 吴宠昊, 郭春雨, 郭丽, 吴旭, 吕启涛, 阮双琛

All-solid-state high-power deep ultraviolet picosecond laser

OU Zuoyuan, XU Sizhi, LIU Xing, GAO Yubo, CHEN Junzhan, HE Xingyu, LU Haotian, WU Chonghao, GUO Chunyu, GUO Li, WU Xu, LUE Qitao, RUAN Shuangchen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 全固态高功率深紫外激光器具有光子能量高、脉冲宽度短和空间分辨率优异等优点, 在科学研究和先进制造等领域展现出重要的应用价值. 本文基于自主研发的全固态Nd:YVO4皮秒MOPA激光放大器(平均功率140 W、重复频率800 kHz、脉冲宽度8.33 ps), 开展了LBO和β-BBO晶体Ⅰ类相位匹配的腔外二倍频与四倍频研究. 双光子吸收是限制深紫外光功率进一步提升的关键因素, 通过研究高功率双波长激光在β-BBO晶体的透过率和温升, 发现高功率深紫外光在β-BBO晶体中存在较强的双光子吸收, 引发的热效应导致相位失配, 严重影响频率转换效率和输出稳定性. 为了进一步提高深紫外功率, 本文采用大尺寸光斑泵浦(光斑尺寸1.5 mm×1 mm) β-BBO晶体方案, 在泵浦峰值功率密度<1.11 GW/cm2的条件下, 有效地抑制了双光子吸收效应引起的热梯度, 实现了平均功率11 W的四倍频深紫外光输出, 单脉冲能量为13.75 μJ. 经过8 h运行, 功率抖动的均方根小于0.96%(@ 8 W). 该光源有望在超快精密加工和高次谐波产生等领域发挥重要作用.
    Deep ultraviolet (DUV) picosecond lasers, operating in a 200–280 nm wavelength range, possess significant advantages, such as high photon energy and high resolution. These attributes make them highly promising for applications like semiconductor detection, ensuring the production of high-quality, defect-free semiconductor devices, as well as for advanced scientific research and industrial processing. High-power DUV picosecond lasers are typically generated via nonlinear frequency conversion of infrared lasers based on master oscillator power amplifier (MOPA) configurations. Among various DUV laser technologies, systems based on β-BBO crystals are particularly valuable due to their simple design and cost-effectiveness. However, the linear two-photon absorption, as well as the formation of dynamic color centers in BBO, are significant limitations for high-power, high-repetition-rate UV radiation, leading to thermal effects. Hence, it is important to carefully study the performance characteristics of BBO for high-power, high-repetition-rate pulse generation in the UV at 266 nm.This study presents a high-power, all-solid-state DUV picosecond laser developed using a 1064 nm Nd:YVO4 MOPA amplification architecture. In this experimental setup, a 50 mW, 7.8 ps, 20 MHz all-fiber SESAM mode-locked laser is used as a seed source, achieving 140 W in amplified output power 8.33 ps in pulse duration at 1064 nm via MOPA. In the nonlinear frequency conversion process, the amplified laser pulses are initially focused onto an LBO crystal for secondary harmonic generation (SHG). Precise temperature control of the LBO crystal can generate a 532 nm output with 73 W in power and 6.93 ps in pulse duration, while achieving 52.64% in conversion efficiency. Two-photon absorption is a key factor limiting the further enhancement of deep ultraviolet (DUV) laser power. By investigating the transmittance and temperature rise of a high-power dual-wavelength laser in a β-BBO crystal, the results indicate that strong two-photon absorption occurs under high-power DUV irradiation. This absorption induces significant thermal effects, resulting in a temperature gradient within the crystal and leading to phase mismatch, which severely affects frequency conversion efficiency and output stability.To solve this problem and further increase the DUV output power, a large-spot pumping scheme (spot size: 1.5 mm × 1 mm) is adopted in this work. Under a pump peak power density of less than 1.11 GW/cm2, the thermal gradient caused by two-photon absorption is effectively suppressed, achieving maximum fourth-harmonic output power of 11 W. The corresponding single-pulse energy reaches 13.75 μJ. The root mean square (RMS) jitter, measured in an 8-hour period, is less than 0.96%.This all-solid-state DUV laser demonstrates excellent performance characteristics, including high average power, stability, resolution, and peak power, making it a strong candidate for applications requiring efficient and high-precision processing or detection. By further increasing the pump power and optimizing the temperature control system, the output power of the laser can be significantly enhanced, thereby broadening its applicability and competitiveness in high-end fields such as semiconductor manufacturing, advanced research, and industrial processing.
  • 图 1  全固态深紫外皮秒激光器实验装置图. AOM, 声光调制器; Pre-Amp, 光纤预放大模块; HWP, 半波片; PBS, 偏振分光棱镜; TFP, 薄膜偏振片; DM, 双色镜

    Fig. 1.  All-solid-state DUV picosecond lasers experimental setup. AOM, acoustic optical modulator; Pre-Amp, fiber pre-amplification module; HWP, half-wave plate; PBS, polarizing beam splitter prisms; TFP, thin-film polarizer; DM, dichroic mirror.

    图 2  近红外光光束特性 (a) 近场光斑及M2; (b) 自相关曲线; (c) 重复频率; (d) 输出光谱

    Fig. 2.  Beam characteristics of Near-infrared laser: (a) Near-field spot and M2; (b) autocorrelation curve; (c) repetition rate; (d) output spectrum.

    图 3  绿光光束特性 (a) 绿光功率随近红外光功率变化曲线; (b) 自相关曲线及重复频率; (c) 近场光斑及M2; (d) 输出光谱

    Fig. 3.  Beam characteristics of green laser: (a) Green laser power changes with Near-infrared laser power; (b) autocorrelation curve and repetition rate; (c) near-field spot and M2; (d) output spectrum.

    图 4  不同激光功率注入下的透过率与β-BBO晶体温度 (a) 绿光; (b) 深紫外光

    Fig. 4.  Transmission and temperature of β-BBO crystal under different laser power injection: (a) Green laser; (b) DUV.

    图 5  深紫外光光束特性 (a) 深紫外光功率随绿光功率变化曲线; (b) 输出光谱; (c) 自相关曲线及重复频率; (d) 输出功率稳定性

    Fig. 5.  Beam characteristics of DUV: (a) DUV power changes with green laser power; (b) output spectrum; (c) autocorrelation curve and repetition rate; (d) stability of output power.

  • [1]

    Liu K, Li H, Qu S Z, Liang H K, Wang Q J, Zhang Y 2020 Opt. Express 28 18360Google Scholar

    [2]

    Wen N, Zhang S J, Zong N, Gao H W, Bo Y, Peng Q J, Cui D F, Xu Zu Y 2022 Optica Advanced Photonics Congress 2022, Maastricht, Limburg Netherlands, July 24-28, 2022 NpTu 1G 6

    [3]

    Mutailipu M, Pan S 2020 Angew. Chem. Int. Ed. 59 20302Google Scholar

    [4]

    Zhu J L, Liu J M, Xu T L, Yuan S, Zhang Z X, Jiang H, Gu H G, Zhou R J, Liu S Y 2022 Int. J. Extreme Manuf. 4 032001Google Scholar

    [5]

    Meshulach D, Dolev I, Yamazaki Y, Tsuchiya K, Kaneko M, Yoshino K, Fujii T 2010 Metrology, Inspection, and Process Control for Microlithography XXIV. SPIE San Jose, California, United States, February 21-25 7638 76380K

    [6]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno Massimo, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley WM, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik C. Svetina M, Trovo M, Veronese M, Zangrando D, Zangrando M 2013 Nat. Photonics 7 913Google Scholar

    [7]

    Cinquegrana P, Demidovich A, Kurdi G, Nikolov I, Sigalotti P, Susnjar P, Danailov M B 2021 High Power Laser Sci. Eng. 9 e61Google Scholar

    [8]

    Tanaka S, Arakawa M, Fuchimuka A, Sasaki Y, Onose T, Kamba Y, Igarashi H, Qu C, Tamiya M, Oizumi H, Ito S, Kakizaki K, Xuan H W, Zhao Z G, Kobayashi Y, Mizoguchi H 2016 Solid State Lasers XXV: Technology and Devices. SPIE San Francisco, California, United States February 13-18 9726 424

    [9]

    Fujimoto J, Kobayashi M, Kakizaki K, Oizumi H, Mimura T, Matsunaga T, Mizoguchi H 2017 High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI. SPIE San Francisco, California, United States January28-February 2 10097 234

    [10]

    Cui Z J, Sun M Y, Liu De’an, Zhu, J Q 2022 Opt. Express 30 43354Google Scholar

    [11]

    Liu Q, Yan X P, Fu X, Gong M, Wang D S 2008 Laser Phys. Lett. 6 203

    [12]

    王子文, 曹雪辰, 张艳林, 程东林, 靳丕铦, 卢华东 2024 中国激光 51 1401003Google Scholar

    Wang Z W, Cao X C, Zhang Y L, Cheng D L, Jin P X, Lu H D 2024 Chin. J. Lasers 51 1401003Google Scholar

    [13]

    何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 物理学报 49 2106Google Scholar

    He J L, Lu X Q, Jia Y L, Man B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106Google Scholar

    [14]

    Wang N, Zhang J Y, Yu H J, Lin X C, Yang G W 2022 Opt. Express 30 5700Google Scholar

    [15]

    陈国柱, 沈咏, 刘曲, 邹宏新 2014 物理学报 63 054204Google Scholar

    Chen G Z, Shen Y, Liu Q, Zou H X 2014 Acta Phys. Sin. 63 054204Google Scholar

    [16]

    郑佳琪, 丛振华, 刘兆军, 王上, 赵智刚 2021 中国激光 48 1201008Google Scholar

    Zheng J Q, Cong Z H, Liu Z J, Wang S, Zhao Z G 2021 Chin. J. Lasers 48 1201008Google Scholar

    [17]

    Orii Y, Kohno K, Tanaka H, Yoshimura M, Mori Y, Nishimae J, Shibuya K 2022 Opt. Express 30 11797Google Scholar

    [18]

    Orii Y, Yoshii K, Kohno K, Tanaka H, Shibuya K, Okada G, Mori Y, Nishimae J, Yoshimura M 2023 Opt. Express 31 14705Google Scholar

    [19]

    俞航航, 张志韬, 玄洪文 2024 中国激光 51 0701020Google Scholar

    Yu H H, Zhang Z T, Xuan H W 2024 Chin. J. Lasers 51 0701020Google Scholar

    [20]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [21]

    Kumar S C, Casals J C, Wei J X, Ebrahim-Zadeh M 2015 Opt. Express 23 28091Google Scholar

    [22]

    Takahashi M, Osada A, Dergachev A, Moulton P F, Cadatal-Raduban M, Shimizu T, Sarukura N 2011 J. Cryst. Growth 318 606Google Scholar

    [23]

    R Bhandari, T Taira, A Miyamoto, Y Furukawa, T Tago 2012 Opt. Mater. Express 2 907Google Scholar

  • [1] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, doi: 10.7498/aps.73.20231923
    [2] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, doi: 10.7498/aps.73.20241115
    [3] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, doi: 10.7498/aps.72.20230877
    [4] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构. 物理学报, doi: 10.7498/aps.70.20210568
    [5] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析. 物理学报, doi: 10.7498/aps.70.20201403
    [6] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, doi: 10.7498/aps.69.20200083
    [7] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, doi: 10.7498/aps.68.20190513
    [8] 盖敏强, 王颖, 潘世烈. 类KBe2BO3F2结构硼酸盐深紫外非线性光学材料的研究进展. 物理学报, doi: 10.7498/aps.68.20182145
    [9] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, doi: 10.7498/aps.64.164205
    [10] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器. 物理学报, doi: 10.7498/aps.58.5443
    [11] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数. 物理学报, doi: 10.7498/aps.58.5035
    [12] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件. 物理学报, doi: 10.7498/aps.56.7114
    [13] 赵书林, 朱宝强, 詹庭宇, 蔡希洁, 刘仁红, 杨 琳, 张志祥, 毕纪军. 高功率钕玻璃激光三倍频脉冲时间波形的研究. 物理学报, doi: 10.7498/aps.55.4170
    [14] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, doi: 10.7498/aps.55.4161
    [15] 刘运全, 张 杰, 梁文锡, 王兆华. 飞秒掺钛蓝宝石激光三倍频理论和实验研究. 物理学报, doi: 10.7498/aps.54.1593
    [16] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, doi: 10.7498/aps.54.3675
    [17] 陶宗明, 张寅超, 吕勇辉, 胡顺星, 邵石生, 曹开法, 刘小勤, 岳古明, 胡欢陵. Nd:YAG四倍频激光抽运甲烷后的受激拉曼效应及其物理机制分析. 物理学报, doi: 10.7498/aps.53.2589
    [18] 吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰. 飞秒激光在BBO晶体中倍频效率的数值计算. 物理学报, doi: 10.7498/aps.51.1268
    [19] 何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元. BBO四倍频全固态Nd:YVO4紫外激光器. 物理学报, doi: 10.7498/aps.49.2106
    [20] 马洪良, 孙可煦, 易荣清, 崔延莉, 唐道源, 郑志坚. 三倍频激光等离子体X射线转换研究. 物理学报, doi: 10.7498/aps.45.1688
计量
  • 文章访问数:  369
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-28
  • 修回日期:  2025-05-08
  • 上网日期:  2025-05-10

/

返回文章
返回