搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武 梁迪 殷亚楠 董磊 王韬 周昕杰

引用本文:
Citation:

SiC功率MOSFET单粒子效应与加固技术研究进展

邱一武, 梁迪, 殷亚楠, 董磊, 王韬, 周昕杰
cstr: 32037.14.aps.74.20250273

Research progress of single event effect and reinforcement technology of SiC power metal-oxide-semiconductor field-effect transistors

QIU Yiwu, LIANG Di, YIN Yanan, DONG Lei, WANG Tao, ZHOU Xinjie
cstr: 32037.14.aps.74.20250273
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在空间核反应堆系统、深空探测器电源模块以及运载火箭推进装置等极端辐射环境中, 高压大功率器件展现出重要的应用价值. 碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低导通损耗等优点, 能够使宇航电源的效率得到进一步提升. 因此, SiC功率MOSFET空间辐射效应和抗辐射加固技术迅速成为行业的研究热点. 首先, 本文回顾了SiC功率MOSFET器件的发展历程, 分析了从平面栅技术到沟槽栅技术的演变过程, 并对未来新型SiC功率MOSFET技术进行了展望. 其次, 针对SiC功率MOSFET在复杂空间环境下面临的辐射损伤问题, 着重梳理了目前国内外关于重离子辐照SiC功率MOSFET引起的单粒子烧毁与单粒子栅穿的相关研究成果. 最后, 基于SiC功率MOSFET单粒子辐射损伤机制分析, 总结了目前SiC功率MOSFET抗辐射加固技术的研究进展, 为研究SiC功率MOSFET单粒子效应损伤机制以及改进其抗辐射加固技术提供参考.
    In extreme radiation environments, such as space nuclear reactor systems, deep-space probe power modules, and launch vehicle propulsion systems, high-voltage and high-power devices demonstrate significant practical value. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) possess advantages including high breakdown voltage, thermal stability, and low on-state resistance, enabling further improvements in aerospace power supply efficiency. Therefore, research on radiation effects and radiation-hardening techniques for SiC power MOSFETs has rapidly emerged as a critical focus in the industry. Firstly, this paper reviews the developmental evolution of SiC power MOSFETs, analyzes the necessity of transitioning from planar gate to trench-gate architectures, and provides future prospects for advanced SiC power MOSFET technologies. Secondly, it systematically compiles current research achievements in single event burnout (SEB) and single event gate rupture (SEGR) caused by heavy ion irradiation in SiC power MOSFETs. Finally, based on a mechanistic analysis of radiation-induced single event damage in SiC power MOSFETs, this study summarizes recent progress of radiation-hardening technologies, aiming to provide valuable ideas for understanding radiation induced failure mechanisms and enhancing the radiation tolerance of SiC power MOSFETs.
      通信作者: 周昕杰, zhouxinjie2000@sina.com
    • 基金项目: 抗辐照应用技术创新中心创新基金(批准号: KFZC2021010202)资助的课题.
      Corresponding author: ZHOU Xinjie, zhouxinjie2000@sina.com
    • Funds: Project supported by the Innovation Fund for the Center for Technology Innovation for Anti-Radiation Applications, China (Grant No. KFZC2021010202).
    [1]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453Google Scholar

    [2]

    Frisina F, Gombia E, Chirco P, Tavolo N, Mosca R, Fuochi P G 1990 Radiat. Phys. Chem. 35 500Google Scholar

    [3]

    Hazdra P, Vobecky J, Brand K 2002 Nucl. Instrum. Methods Res. , Sect. B 186 414Google Scholar

    [4]

    Meng X, Yang H, Kang G, Wang J, Jia H, Chen P, Tsien P 2003 J. Mater. Sci. Mater. Electron. 14 199Google Scholar

    [5]

    Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y Khasan K B, Kalashnikova A A, Privat A 2021 IEEE Trans. Nucl. Sci. 68 611Google Scholar

    [6]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lü H, Li P W, Tang M 2019 At. Energy Sci. Technol. 53 2114Google Scholar

    [7]

    Asai H, Nashiyama I, Sugimoto K, Shiba K, Sakaide Y, Ishimaru Y 2014 IEEE Trans. Nucl. Sci. 61 3109Google Scholar

    [8]

    Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F 2021 IEEE Trans. Nucl. Sci. 68 1623Google Scholar

    [9]

    Baliga B J 1989 IEEE Electron Device Lett. 10 455Google Scholar

    [10]

    She X, Huang A Q, Lucía ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [11]

    Palmour J W 2014 Proceedings of 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–17, 2014 p1

    [12]

    Saks N S, Mani S S, Agarwal A K 2000 Appl. Phys. Lett. 76 2250Google Scholar

    [13]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE Trans. Electron Devices 64 674Google Scholar

    [14]

    Zhu S, Shi L, Jin M, Qian J, Bhattacharya M, Maddi H L R 2023Proceedings of 2023 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, March 26–30, 2023 pp1–5

    [15]

    Rohm https://techweb.rohm.com/product/power-device/sic/ 6574 [2025-02-25]

    [16]

    Rohm https://www.rohm.com/news-detail?news-title = new-4th-gen-sic-mosfets&defaultGroupId = false [2025-02-25]

    [17]

    孙培元, 孙立杰, 薛哲, 佘晓亮, 韩若麟, 吴宇微, 王来利, 张峰 2023 电子与封装 23 010111Google Scholar

    Sun P Y, Sun L J, Xue Z, She X L, Han R L, Wu Y W, Wang L L, Zhang F 2023 Electron. Packag. 23 010111Google Scholar

    [18]

    Infineon Technologies AG https://www.signalintegrityjournal.com/articles/3493-infineon-introduces-coolsic-mosfet-g2-the-next-generation-of-silicon-carbide-technology-for-high-performance-systems-that-drive-decarbonization [2025-02-25]

    [19]

    Lay L https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf [2025-02-25]

    [20]

    Onsemi https://www.onsemi.cn/company/news-media/press-announcements/en/next-generation-onsemi-1200-v-elitesic-m3s-devices-enhance-efficiency-of-electric-vehicles-and-energy-infrastructure-applications [2025-02-25]

    [21]

    黄润华, 陶永洪, 柏松, 陈刚, 汪玲, 刘奥, 卫能, 李赟, 赵志飞 2014 固体电子学研究与进展 34 510Google Scholar

    Huang R H, Tao Y H, Bai S, Chen G, Wang L, Liu A, Wei N, Li Y, Zhao Z F 2014 Res. Prog. Solid State Electron. 34 510Google Scholar

    [22]

    袁俊, 王宽, 郭飞, 徐少东, 成志杰, 陈伟, 吴阳阳, 彭若诗, 朱厉阳, 李明哲 化合物半导体 [2025-02-25]]

    Yuan J, Wang K, Guo F, Xu S D, Cheng Z J, Chen W, Wu Y Y, Peng R S, Zhu L Y, Li M Z Compound Semiconductor [2025-02-25]

    [23]

    袁俊 2021 CN11390801B

    Yuan J 2021 CN11390801B

    [24]

    陈伟, 郭飞, 成志杰, 王宽, 吴阳阳, 袁俊 2024 CN119133246A

    Chen W, Guo F, Cheng Z J, Wang K, Wu Y Y, Yuan J 2024 CN119133246A

    [25]

    刘启军, 宋瓘, 罗烨辉, 何启鸣, 王亚飞, 姚尧, 李诚瞻, 肖强, 罗海辉 2024 CN119050156A

    Liu Q J, Song G, Luo Y H, He Q M, Wang Y F, Yao Y, Li C Z, Xiao Q, Luo H H 2024 CN119050156A

    [26]

    王亚飞, 陈喜明, 李诚瞻, 罗海辉 2020 CN111933685B

    Wang Y F, Chen X M, Li C Z, Luo H H 2020 CN111933685B

    [27]

    Tanaka S, Rajanna K, Abe T, Esashi M 2001 J. Vac. Sci. Technol., B 19 2173Google Scholar

    [28]

    Palmour J W, Edmond J A, Kong H S, Jr C 1993 Proceedings of Silicon Carbide and Related Materials: Fifth International Conference on SiC Carbide and Related Materials (ICSCRM’93), Washington, DC, USA, November 1–3, 1993 pp499–502

    [29]

    Tan J, Cooper J A, Melloch M R 1998 IEEE Electron Device Lett. 19 487Google Scholar

    [30]

    Shen Z, Zhang F, Yan G, Wen Z, Zhao W, Wang L 2020 IEEE Trans. Electron. Devices 67 4046Google Scholar

    [31]

    Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H, Yototsuji Y 2011 Proceedings of 2011 International Electron Devices Meeting, Washington, DC, USA, December 05–07, 2011 pp26.5.1–26.5.3

    [32]

    Harada S, Kobayashi Y, Kinoshita A, Ohse N, Kojima T, lwaya M, Shiomi H, Kitai H, Kyogoku S, Ariyoshi K, Onishi Y, Kimura H 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1

    [33]

    Kim W, Lichtenwalner D J, Ryu S H, Islam N 2022 US 2022/0157959A1

    [34]

    张跃, 张腾, 黄润华, 柏松 2022 电子元件与材料 41 376Google Scholar

    Zhang Y, Zhang T, Huang R, Bo S 2022 Electron. Compon. Mater. 41 376Google Scholar

    [35]

    Saitoh Y, Masuda T, Tamaso H, Notsu H, Michikoshi H, Hiratsuka K, Harada S, Mikamura Y 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1

    [36]

    Uchida K, Hiyoshi T, Saito Y, Tsuno T 2020 Mater. Sci. Forum 1004 776Google Scholar

    [37]

    Rycroft M J 1995 J. Atmos. Terr. Phys. 57 1672Google Scholar

    [38]

    Niskanen K, Touboul A D, Germanicus R C, Michez A, Javanainen A, Wrobel F 2020 IEEE Trans. Nucl. Sci. 67 1365Google Scholar

    [39]

    Liang X, Zhao J, Zheng Q, Cui J, Yang S, Wang B, Zhang D, Yu X, Guo Q 2021 Radiat. Eff. Defects Solids. 176 1038Google Scholar

    [40]

    Mcpherson J A, Hitchcock C W, Chow T P, Ji W, Woodworth A A 2021 IEEE Trans. Nucl. Sci. 68 651Google Scholar

    [41]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [42]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [43]

    Oberg D L, Wert J L 1987 IEEE Trans. Nucl. Sci. 34 1736Google Scholar

    [44]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [45]

    Lauenstein J, Casey M, Ladbury R, Kim H, Phan A, Topper A 2021 Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 21–25, 2021 pp1–8

    [46]

    Martinella C, Natzk P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar

    [47]

    王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar

    [48]

    刘忠永, 蔡理, 刘小强, 刘保军, 崔焕卿, 杨晓阔 2017 微纳电子技术 54 80Google Scholar

    Liu Z Y, Cai L, Liu X Q, Liu B J, Cui H Q, Yang X K 2017 Micronanoelectron. Technol. 54 80Google Scholar

    [49]

    于庆奎, 曹爽, 张琛睿, 孙毅, 梅博, 王乾元, 王贺, 魏志超, 张洪伟, 张腾, 柏松 2023 原子能科学技术 57 2254Google Scholar

    Yu Q K, Cao S, Zhang S R, Sun Y, Mei B, Wang Q Y, Wang H, Wei Z C, Zhang H W, Zhang T, Bai S 2023 At. Energy Sci. Technol. 57 2254Google Scholar

    [50]

    Zhao S, Liu Y, Yan X, Hu P, Li X, Chen Q, Zhai P, Zhang T, Jiao Y, Sun Y, Liu J 2025 Microelectron. Reliab. 167 115663Google Scholar

    [51]

    Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z A, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L, Ouyang X P 2023 Chin. Phys. B 32 028504Google Scholar

    [52]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [53]

    Peng C, Lei Z, Chen Z, Yue S, Zhang Z, He Y, Huang Y 2021 IET Power Electron. 14 1700Google Scholar

    [54]

    Wu L, Dong S, Xu X, Wei Y, Liu Z, Li W, Yang J, Li X 2024 IEEE Trans. Nucl. Sci. 71 1978Google Scholar

    [55]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar

    [56]

    Wang L, Jia Y, Zhou X, Zhao Y, Wang L, Li T, Hu D, Wu Y, Deng Z 2022 Microelectron. Reliab. 137 114770Google Scholar

    [57]

    彭锦秋 2020 硕士学位论文 (兰州: 兰州大学)

    Peng J Q 2020 M. S. Thesis (Lanzhou: Lanzhou University

    [58]

    彭锦秋, 张行, 吴康, 刘兴宇, 杨旭, 白晓厚, 韦峥, 姚泽恩, 王俊润, 蒋天植, 包超, 卢佳玮, 张宇 2023 原子核物理评论 40 459Google Scholar

    Peng J Q, Zhang X, Wu K, Liu X Y, Yang X, Bai X H, Wei Z, Yao Z E, Wang J R, Jiang T Z, Bao C, Lu J W, Zhang Y 2023 Nucl. Phys. Rev. 40 459Google Scholar

    [59]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466]]Google Scholar

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466Google Scholar

    [60]

    Martinella C, Race S, Stark R, Alia R G, Javanainen A, Grossner U 2023 IEEE Trans. Nucl. Sci. 70 1844Google Scholar

    [61]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar

    [62]

    Martinella C, Race S, Für N, Goncalves de Medeiros H, Zhou H, Grossner U 2024 IEEE Trans. Nucl. Sci. 71 1440Google Scholar

    [63]

    李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰 2024 物理学报 73 026103Google Scholar

    Li Y F, Guo H X, Zhang H, Bai R X, Zhang F Q, Ma W Y, Zhong X L, Li J F, Lu X J 2024 Acta Phys. Sin. 73 026103Google Scholar

    [64]

    Shi J, Wang Y, Fei X, Sun B, Song Y, Liu Y, Zhang W 2024 IEEE Access 13 5023Google Scholar

    [65]

    Yu C, Bao M, Wang Y, Guo H, Han Y, Hu H 2022 IEEE Trans. Device Mater. Reliab. 22 469Google Scholar

    [66]

    Wang Y, Zhou J, Lin M, Li X, Yang J, Cao F 2022 IEEE Trans. Electron Devices 10 373Google Scholar

    [67]

    Hohl J H, Johnnson G H 1989 IEEE Trans. Nucl. Sci. 36 2260Google Scholar

    [68]

    Kuboyama S, Matsuda S, Kanno T, Ishii T 1992 IEEE Trans. Nucl. Sci. 39 1698Google Scholar

    [69]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [70]

    Zhang X 2006 Ph. D. Dissertation (MD, USA: University of Maryland, College Park

    [71]

    Griffoni A, Duivenbode J v, Linten D, Simoen E, Rech P, Dilillo L 2011 Proceedings of 2011 12th European Conference on Radiation and Its Effects on Components and Systems, Sevilla, Spain, September 19–23, 2011 pp226–231

    [72]

    Ikpe S A, Lauenstein J M, Carr G A, Hunter D, Ludwing L L, Wood W 2016 Proceedings of 2016 IEEE International Reliability Physics Symposium (IRPS) Pasadena, CA, USA, April 17–21, 2016 p1

    [73]

    Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L 2019 IEEE Trans. Nucl. Sci. 66 1694Google Scholar

    [74]

    Shoji T, Nishida S, Hamada K, Tadano H 2015 Microelectron. Reliab. 55 1517Google Scholar

    [75]

    Wang H, Gu J, Huang X, Zhang J, Jing Y 2024 Microelectron. Reliab. 154 115344Google Scholar

    [76]

    McPherson J A, Hitchcock C W, Chow T P, Ji W 2020 Mater. Sci. Forum. 1004 889Google Scholar

    [77]

    Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C 2024 IEEE Electron Device Lett. 45 2495Google Scholar

    [78]

    Zhang N, Tang X, Song Q, Liu K, Zhang Z, Yuan H 2023 Proceedings of 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, May 24–27, 2023 pp1–3

    [79]

    Waskiewicz A E, Groninger J W, Strahan V H, Long D M 1986 IEEE Trans. Nucl. Sci. 33 1710Google Scholar

    [80]

    Lauenstein J M, Casey M, Topper A, Wilcox E, Phan A, Ikpe S, LaBel K 2015 Proceedings of 2015 IEEE Nuclear and Space Radiation Effects Conference (NSREC) Boston, Massachusetts, July 16, 2015 p1

    [81]

    Liu S, Titus J L, Boden M 2007 IEEE Trans. Nucl. Sci. 54 2554Google Scholar

    [82]

    Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron Devices 66 2551Google Scholar

    [83]

    Wang Y, Lin M, Li X, Wu X, Yang J, Bao M 2019 IEEE Trans. Electron Devices 66 4264Google Scholar

    [84]

    Jiang L, Liu J, Tian X, Chen H, Tang Y, Bai Y 2020 IEEE Trans. Electron Devices 67 3698Google Scholar

    [85]

    林茂 2020 硕士学位论文 (杭州: 杭州电子科技大学)

    Lin M 2020 M. S. Thesis (Hangzhou: Hangzhou Dianzi University

    [86]

    Liao Q, Liu H 2024 Micromachines 15 642Google Scholar

    [87]

    Huang S, Amaratunga A J, Udrea F 2000 IEEE Trans. Nucl. Sci. 47 2640Google Scholar

    [88]

    Zerarka M, Austin P, Morancho F, Isoird K, Arbess H, Tasselli J 2014 IET Circuits Devices Syst. 8 197Google Scholar

    [89]

    Lu J, Liu H, Cai X, Luo J, Li B, Li B, Wang L, Han Z 2018 J. Semicond. 39 034003Google Scholar

    [90]

    Yu C, Wang Y, Cao F, Huang L, Wang Y 2015 IEEE Trans. Electron Devices 62 143Google Scholar

    [91]

    杨余 2023 硕士学位论文 (湖南: 湖南大学)

    Yang Y 2023 M. S. Thesis (Hunan: Hunan University

    [92]

    Wang Y, Liu T, Qian L, Wu H, Yu Y, Tao J, Cheng Z, Hu S 2023 Micromachines 14 688Google Scholar

    [93]

    Sun S, Chen F, Sun Y, Li Y, Yang K, Tang X 2024 Microelectron. Reliab. 164 115569Google Scholar

    [94]

    Ranjan S, Majumder S, Naugarhiya A 2020 Proceedings of 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, February 28–29, 2020 pp272–275

    [95]

    Amjath M, Ranjan S, Naugarhiya A 2022 Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) Bhiai, India, April 21–22, 2022 pp1–5

    [96]

    Darwish M, Yue C, Lui K H, Giles F, Chan B, Chen K I, Pattanayak D, Chen Q, Terrill K, Owyang K 2003 Proceedings of the ISPSD ‘03, 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, Cambridge, UK, April 14–17 2003 pp24–27

    [97]

    Lu J, Liu H, Luo J, Wang L, Li B, Li B, Zhang G, Han Z 2016 Proceedings of 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) Bremen, Germany, September 19–23, 2016 pp1–5

    [98]

    Liu Y, Wang Y, Yu C H, Luo X, Cao F 2018 Superlattices Microstruct. 122 165Google Scholar

    [99]

    Liang S, Yang Y, Chen J, Shu L, Wang L, Wang J 2024 IEEE Trans. Device Mater. Reliab. 24 507Google Scholar

    [100]

    Shen P, Wang Y, Li X J, Yang J, Zheng L 2023 Microelectron. Reliab. 142 114931Google Scholar

    [101]

    Kim J, Kim K 2022 IEEE Trans. Device Mater. Reliab. 22 164Google Scholar

    [102]

    Yu Q, Chen W, Huang J, Shen Z, Lin Z, Peng H, Shu H, Li J 2025 Micro Nanostruct. 198 208064Google Scholar

  • 图 1  SiC功率MOSFET器件结构示意图 (a)平面型MOSFET; (b)沟槽型MOSFET

    Fig. 1.  Structure diagram of SiC power MOSFET device (not to scale): (a) VDMOSFET; (b) TGMOSFET.

    图 2  SiC功率MOSFET产品技术演变示意图

    Fig. 2.  Technical evolution diagram of SiC power MOSFET products.

    图 3  几种沟槽型SiC MOSFET栅氧屏蔽结构示意图 (a) ROHM双沟槽结构[15]; (b) Infineon非对称沟槽结构[17]; (c)直接屏蔽结构[29]; (d)间接屏蔽结构[32]; (e)台阶沟槽结构[33]; (f) P+埋层V型沟槽结构[35]

    Fig. 3.  Schematic diagrams of several trench-type SiC MOSFET gate oxide shielding structures (not to scale): (a) ROHM’s double-trench structure[15]; (b) Infineon’s asymmetric trench structure[17]; (c) direct shielding structure[29]; (d) indirect shielding structure[32]; (e) stepped trench structure[33]; (f) P+ buried layer V-shaped trench structure[35].

    图 4  功率MOSFET器件总剂量效应、位移损伤效应和单粒子效应损伤机理示意图

    Fig. 4.  Damage mechanism diagram of power MOSFET’s total ionization dose, displacement damage and single event effect.

    图 5  重离子辐照过程中SiC MOSFET SEB过程与VDS的关系[44]

    Fig. 5.  The SEB processing for SiC power MOSFET as a function of the drain-source bias VDS during the heavy ion irradiation[44].

    图 6  Ar, Fe, Kr和Xe离子辐照实验结果[46] (a)器件在VDS = 60 V下Xe离子辐照时的ID-VGSIG-VGS特性曲线; (b)辐照后VDS扫描测试, 所有器件在580 V < VDS < 700 V范围内失效. 原始状态下的IDIG以灰色显示

    Fig. 6.  Results from irradiations with Ar, Fe, Kr and Xe ions[46]: (a) ID-VGS and IG-VGS of device exposed to Xe at VDS = 60 V; (b) post-irradiation VDS sweep; all the devices failed at 580 V < VDS < 700 V. The pristine ID and IG are shown in gray.

    图 7  重离子入射 (a) 1 ps, (b) 10 ps, (c) 100 ps和(d) 1 ns后器件内部晶格温度分布图[63]

    Fig. 7.  Distribution of lattice temperature in device after heavy ion incident of (a) 1 ps, (b) 10 ps, (c) 100 ps, and (d) 1 ns[63].

    图 8  (a) 在LET = 0.1 pC/μm, VDS = 400 V条件下, 无N+源和有N+源器件在30, 100 ps和1 ns时离子撞击后的电子电流密度分布 [75]; (b) 垂直N沟道双扩散功率MOSFET辐射下的一维电场和载流子分布[76]

    Fig. 8.  (a) Electron current density distribution at 30, 100 ps, and 1 ns after the ion strike for device without N+ source and with N+ source (LET = 0.1 pC/μm, VDS = 400 V) [75]; (b) vertical N-channel double-diffused power MOSFET under radiation strike with 1D electric field distribution and carrier mapping[76].

    图 9  NITG-MOSFET单粒子烧毁结果和N+岛优化参数设计[83] (a)厚度; (b)宽度; (c)第二缓冲层掺杂浓度

    Fig. 9.  SEB results of NITG-MOSFET and optimized design parameters of N+ island[83]: (a) Thickness; (b) width; (c) N-buffer 2 dopant concentration.

    图 10  在LET = 0.1 pC/μm, VDS = 650 V条件下, 离子撞击后器件中心的内部电场变化图[75] (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET

    Fig. 10.  The variation of internal electric field at the device center after the ion strike (LET = 0.1 pC/μm, VDS = 650 V) [75]: (a) VDMOSFET; (b) DBL-MOSFET; (c) GBL-MOSFET; (d) SBL-MOSFET.

    图 11  1200 V SiC MOSFET结构示意图[86] (a)分裂栅与集成肖特基势垒二极管(SBD)结构; (b)扩展型P+源接触结构; (c)多层N型间隔缓冲层结构; (d)扩展型P+源接触与多层N型间隔缓冲层的复合结构

    Fig. 11.  Schematic diagram of 1200 V SiC MOSFET[86]: (a) With split gate and SBD embedded; (b) with expansion of P+ source contact; (c) with multi-layer N-type interval buffer layer; (d) with expansion of P+ source contact and multi-layer N-type interval buffer layer.

    图 12  抗SEGR的SiC MOSFET器件加固结构示意图 (a) HEC-MOSFET[91]; (b) BSE-MOSFET[92]; (c) IM-DTMOSFET[93]

    Fig. 12.  Hardening structure diagram of SiC MOSFET device against SEGR: (a) HEC-MOSFET[91]; (b) BSE-MOSFET[92]; (c) IM-DTMOSFET[93].

    表 1  平面型SiC MOSFET单粒子效应研究汇总

    Table 1.  Summary of research on single event effect of planar SiC MOSFET.

    器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献
    [1200 V] VDMOSFET Experiment 35.8 350 [6]
    [1200 V] VDMOSFET Experiment 7.7—49.1 580—700 [46]
    [1200 V] VDMOSFET Experiment 0.26—118 200—600 [49]
    [1200 V] VDMOSFET Experiment 70.2 800 [51]
    [1200 V] VDMOSFET Experiment 10—65 500—600 [52]
    [1200 V] VDMOSFET Experiment 81.3 400 [53]
    [1200 V] VDMOSFET Experiment 38.85 400 [54]
    下载: 导出CSV

    表 2  重离子诱导效应总结(阈值)[62]

    Table 2.  Summary of heavy-ion-induced effects (threshold values)[62].

    粒子 LET
    /(MeV·cm2·mg–1)
    Microdose
    /V
    SELC
    /V
    SEGR
    /V
    Xe 62.5 40 70 120
    Kr 32.4 70 120 400
    Ni 20.4 90 120
    Fe 14.53 430 450 500
    Ca 13.5 520 530 550
    下载: 导出CSV

    表 3  沟槽型SiC MOSFET单粒子效应研究汇总

    Table 3.  Summary of research on single event effect of trench SiC MOSFET.

    器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献
    [650 V] DTMOSFET Simulation 151 70 [55]
    [1200 V] DTMOSFET Experiment 81.3 <504 [56]
    [1512 V] DTMOSFET Simulation 15.1 597 [58]
    [900 V] TB-QVDMOSFET Simulation 75.5 478 [64]
    [1260 V] CoolSiC Trench MOSFET Simulation 67.95 600 [65]
    [1200 V] TGMOSFET Experiment 75 500 [66]
    下载: 导出CSV

    表 4  几种主流的SiC MOSFET单粒子效应加固设计汇总

    Table 4.  Summary of several mainstream hardening design of SiC MOSFET single event effect.

    器件类型 加固方法 加固机理 文献
    NITG-MOSFET 多层缓冲层(MBLs) MBLs可以降低N–漂移层与N+衬底界面处的峰值电场强度,
    抑制二次击穿.
    [83]
    IM-DTMOSFET p型源极缓冲层(P-SBL)和
    多缓冲层(MBLs)
    P-SBL和MBLs可以缓解高能重离子撞击后瞬态脉冲
    引起的器件局部温度升高.
    [93]
    STG-MOSFET 源接触处P+屏蔽区和
    高K介质材料(HfO2)
    源接触处P+屏蔽区可抑制寄生BJT导通, 高K介电材料
    可降低栅氧化层的最大电场强度.
    [98]
    HEC-MOSFET JFET中间区域P+
    柱和电流扩散层(CSL)
    P+柱能去除JFET区域周围积累的多余空穴, CSL可以扩大
    能量耗散面积以及在高VDS偏置下提供良好的夹断效果.
    [99]
    DGF-UMOSFET 接地和浮空p-埋层 p-埋层有效降低栅极氧化界面和衬底界面处的晶格最高温度. [100]
    DT-HJDUMOSFET 集成异质结二极管(HJD) HJD结构能抑制寄生BJT的导通并且使产生的空穴电流
    可以有效地泄漏, 提高SEB性能.
    [101]
    SH-MOSFET 源极侧边多晶硅/
    碳化硅异质结
    源极侧边poly-Si区域不仅充当空穴放电的通道, 降低氧化层
    下方积累的空穴浓度, 增强SEGR电阻, 还能有效降低
    寄生BJT的电流增益, 改善SEB性能.
    [102]
    下载: 导出CSV
  • [1]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984 IEEE Trans. Nucl. Sci. 31 1453Google Scholar

    [2]

    Frisina F, Gombia E, Chirco P, Tavolo N, Mosca R, Fuochi P G 1990 Radiat. Phys. Chem. 35 500Google Scholar

    [3]

    Hazdra P, Vobecky J, Brand K 2002 Nucl. Instrum. Methods Res. , Sect. B 186 414Google Scholar

    [4]

    Meng X, Yang H, Kang G, Wang J, Jia H, Chen P, Tsien P 2003 J. Mater. Sci. Mater. Electron. 14 199Google Scholar

    [5]

    Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y Khasan K B, Kalashnikova A A, Privat A 2021 IEEE Trans. Nucl. Sci. 68 611Google Scholar

    [6]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lü H, Li P W, Tang M 2019 At. Energy Sci. Technol. 53 2114Google Scholar

    [7]

    Asai H, Nashiyama I, Sugimoto K, Shiba K, Sakaide Y, Ishimaru Y 2014 IEEE Trans. Nucl. Sci. 61 3109Google Scholar

    [8]

    Niskanen K, Germanicus R C, Michez A, Wrobel F, Boch J, Saigné F 2021 IEEE Trans. Nucl. Sci. 68 1623Google Scholar

    [9]

    Baliga B J 1989 IEEE Electron Device Lett. 10 455Google Scholar

    [10]

    She X, Huang A Q, Lucía ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar

    [11]

    Palmour J W 2014 Proceedings of 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–17, 2014 p1

    [12]

    Saks N S, Mani S S, Agarwal A K 2000 Appl. Phys. Lett. 76 2250Google Scholar

    [13]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE Trans. Electron Devices 64 674Google Scholar

    [14]

    Zhu S, Shi L, Jin M, Qian J, Bhattacharya M, Maddi H L R 2023Proceedings of 2023 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, March 26–30, 2023 pp1–5

    [15]

    Rohm https://techweb.rohm.com/product/power-device/sic/ 6574 [2025-02-25]

    [16]

    Rohm https://www.rohm.com/news-detail?news-title = new-4th-gen-sic-mosfets&defaultGroupId = false [2025-02-25]

    [17]

    孙培元, 孙立杰, 薛哲, 佘晓亮, 韩若麟, 吴宇微, 王来利, 张峰 2023 电子与封装 23 010111Google Scholar

    Sun P Y, Sun L J, Xue Z, She X L, Han R L, Wu Y W, Wang L L, Zhang F 2023 Electron. Packag. 23 010111Google Scholar

    [18]

    Infineon Technologies AG https://www.signalintegrityjournal.com/articles/3493-infineon-introduces-coolsic-mosfet-g2-the-next-generation-of-silicon-carbide-technology-for-high-performance-systems-that-drive-decarbonization [2025-02-25]

    [19]

    Lay L https://www.st.com/content/dam/is20/document/PE3-2_Lay_Lv_ST_SIC_Mosfet_Diode_product_and_application_Industrial_summit_Version2_EN.pdf [2025-02-25]

    [20]

    Onsemi https://www.onsemi.cn/company/news-media/press-announcements/en/next-generation-onsemi-1200-v-elitesic-m3s-devices-enhance-efficiency-of-electric-vehicles-and-energy-infrastructure-applications [2025-02-25]

    [21]

    黄润华, 陶永洪, 柏松, 陈刚, 汪玲, 刘奥, 卫能, 李赟, 赵志飞 2014 固体电子学研究与进展 34 510Google Scholar

    Huang R H, Tao Y H, Bai S, Chen G, Wang L, Liu A, Wei N, Li Y, Zhao Z F 2014 Res. Prog. Solid State Electron. 34 510Google Scholar

    [22]

    袁俊, 王宽, 郭飞, 徐少东, 成志杰, 陈伟, 吴阳阳, 彭若诗, 朱厉阳, 李明哲 化合物半导体 [2025-02-25]]

    Yuan J, Wang K, Guo F, Xu S D, Cheng Z J, Chen W, Wu Y Y, Peng R S, Zhu L Y, Li M Z Compound Semiconductor [2025-02-25]

    [23]

    袁俊 2021 CN11390801B

    Yuan J 2021 CN11390801B

    [24]

    陈伟, 郭飞, 成志杰, 王宽, 吴阳阳, 袁俊 2024 CN119133246A

    Chen W, Guo F, Cheng Z J, Wang K, Wu Y Y, Yuan J 2024 CN119133246A

    [25]

    刘启军, 宋瓘, 罗烨辉, 何启鸣, 王亚飞, 姚尧, 李诚瞻, 肖强, 罗海辉 2024 CN119050156A

    Liu Q J, Song G, Luo Y H, He Q M, Wang Y F, Yao Y, Li C Z, Xiao Q, Luo H H 2024 CN119050156A

    [26]

    王亚飞, 陈喜明, 李诚瞻, 罗海辉 2020 CN111933685B

    Wang Y F, Chen X M, Li C Z, Luo H H 2020 CN111933685B

    [27]

    Tanaka S, Rajanna K, Abe T, Esashi M 2001 J. Vac. Sci. Technol., B 19 2173Google Scholar

    [28]

    Palmour J W, Edmond J A, Kong H S, Jr C 1993 Proceedings of Silicon Carbide and Related Materials: Fifth International Conference on SiC Carbide and Related Materials (ICSCRM’93), Washington, DC, USA, November 1–3, 1993 pp499–502

    [29]

    Tan J, Cooper J A, Melloch M R 1998 IEEE Electron Device Lett. 19 487Google Scholar

    [30]

    Shen Z, Zhang F, Yan G, Wen Z, Zhao W, Wang L 2020 IEEE Trans. Electron. Devices 67 4046Google Scholar

    [31]

    Nakamura T, Nakano Y, Aketa M, Nakamura R, Mitani S, Sakairi H, Yototsuji Y 2011 Proceedings of 2011 International Electron Devices Meeting, Washington, DC, USA, December 05–07, 2011 pp26.5.1–26.5.3

    [32]

    Harada S, Kobayashi Y, Kinoshita A, Ohse N, Kojima T, lwaya M, Shiomi H, Kitai H, Kyogoku S, Ariyoshi K, Onishi Y, Kimura H 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1

    [33]

    Kim W, Lichtenwalner D J, Ryu S H, Islam N 2022 US 2022/0157959A1

    [34]

    张跃, 张腾, 黄润华, 柏松 2022 电子元件与材料 41 376Google Scholar

    Zhang Y, Zhang T, Huang R, Bo S 2022 Electron. Compon. Mater. 41 376Google Scholar

    [35]

    Saitoh Y, Masuda T, Tamaso H, Notsu H, Michikoshi H, Hiratsuka K, Harada S, Mikamura Y 2016 Proceedings of 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, Greece, September 25–29, 2016 p1

    [36]

    Uchida K, Hiyoshi T, Saito Y, Tsuno T 2020 Mater. Sci. Forum 1004 776Google Scholar

    [37]

    Rycroft M J 1995 J. Atmos. Terr. Phys. 57 1672Google Scholar

    [38]

    Niskanen K, Touboul A D, Germanicus R C, Michez A, Javanainen A, Wrobel F 2020 IEEE Trans. Nucl. Sci. 67 1365Google Scholar

    [39]

    Liang X, Zhao J, Zheng Q, Cui J, Yang S, Wang B, Zhang D, Yu X, Guo Q 2021 Radiat. Eff. Defects Solids. 176 1038Google Scholar

    [40]

    Mcpherson J A, Hitchcock C W, Chow T P, Ji W, Woodworth A A 2021 IEEE Trans. Nucl. Sci. 68 651Google Scholar

    [41]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [42]

    Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M 2018 IEEE Trans. Nucl. Sci. 65 1951Google Scholar

    [43]

    Oberg D L, Wert J L 1987 IEEE Trans. Nucl. Sci. 34 1736Google Scholar

    [44]

    Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G 2020 IEEE Trans. Nucl. Sci. 67 1381Google Scholar

    [45]

    Lauenstein J, Casey M, Ladbury R, Kim H, Phan A, Topper A 2021 Proceedings of 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, March 21–25, 2021 pp1–8

    [46]

    Martinella C, Natzk P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423Google Scholar

    [47]

    王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078Google Scholar

    Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078Google Scholar

    [48]

    刘忠永, 蔡理, 刘小强, 刘保军, 崔焕卿, 杨晓阔 2017 微纳电子技术 54 80Google Scholar

    Liu Z Y, Cai L, Liu X Q, Liu B J, Cui H Q, Yang X K 2017 Micronanoelectron. Technol. 54 80Google Scholar

    [49]

    于庆奎, 曹爽, 张琛睿, 孙毅, 梅博, 王乾元, 王贺, 魏志超, 张洪伟, 张腾, 柏松 2023 原子能科学技术 57 2254Google Scholar

    Yu Q K, Cao S, Zhang S R, Sun Y, Mei B, Wang Q Y, Wang H, Wei Z C, Zhang H W, Zhang T, Bai S 2023 At. Energy Sci. Technol. 57 2254Google Scholar

    [50]

    Zhao S, Liu Y, Yan X, Hu P, Li X, Chen Q, Zhai P, Zhang T, Jiao Y, Sun Y, Liu J 2025 Microelectron. Reliab. 167 115663Google Scholar

    [51]

    Zhang H, Guo H X, Lei Z F, Peng C, Zhang Z A, Chen Z W, Sun C H, He Y J, Zhang F Q, Pan X Y, Zhong X L, Ouyang X P 2023 Chin. Phys. B 32 028504Google Scholar

    [52]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [53]

    Peng C, Lei Z, Chen Z, Yue S, Zhang Z, He Y, Huang Y 2021 IET Power Electron. 14 1700Google Scholar

    [54]

    Wu L, Dong S, Xu X, Wei Y, Liu Z, Li W, Yang J, Li X 2024 IEEE Trans. Nucl. Sci. 71 1978Google Scholar

    [55]

    Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H 2019 IEEE Trans. Nucl. Sci. 66 2312Google Scholar

    [56]

    Wang L, Jia Y, Zhou X, Zhao Y, Wang L, Li T, Hu D, Wu Y, Deng Z 2022 Microelectron. Reliab. 137 114770Google Scholar

    [57]

    彭锦秋 2020 硕士学位论文 (兰州: 兰州大学)

    Peng J Q 2020 M. S. Thesis (Lanzhou: Lanzhou University

    [58]

    彭锦秋, 张行, 吴康, 刘兴宇, 杨旭, 白晓厚, 韦峥, 姚泽恩, 王俊润, 蒋天植, 包超, 卢佳玮, 张宇 2023 原子核物理评论 40 459Google Scholar

    Peng J Q, Zhang X, Wu K, Liu X Y, Yang X, Bai X H, Wei Z, Yao Z E, Wang J R, Jiang T Z, Bao C, Lu J W, Zhang Y 2023 Nucl. Phys. Rev. 40 459Google Scholar

    [59]

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466]]Google Scholar

    Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466Google Scholar

    [60]

    Martinella C, Race S, Stark R, Alia R G, Javanainen A, Grossner U 2023 IEEE Trans. Nucl. Sci. 70 1844Google Scholar

    [61]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430Google Scholar

    [62]

    Martinella C, Race S, Für N, Goncalves de Medeiros H, Zhou H, Grossner U 2024 IEEE Trans. Nucl. Sci. 71 1440Google Scholar

    [63]

    李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰 2024 物理学报 73 026103Google Scholar

    Li Y F, Guo H X, Zhang H, Bai R X, Zhang F Q, Ma W Y, Zhong X L, Li J F, Lu X J 2024 Acta Phys. Sin. 73 026103Google Scholar

    [64]

    Shi J, Wang Y, Fei X, Sun B, Song Y, Liu Y, Zhang W 2024 IEEE Access 13 5023Google Scholar

    [65]

    Yu C, Bao M, Wang Y, Guo H, Han Y, Hu H 2022 IEEE Trans. Device Mater. Reliab. 22 469Google Scholar

    [66]

    Wang Y, Zhou J, Lin M, Li X, Yang J, Cao F 2022 IEEE Trans. Electron Devices 10 373Google Scholar

    [67]

    Hohl J H, Johnnson G H 1989 IEEE Trans. Nucl. Sci. 36 2260Google Scholar

    [68]

    Kuboyama S, Matsuda S, Kanno T, Ishii T 1992 IEEE Trans. Nucl. Sci. 39 1698Google Scholar

    [69]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [70]

    Zhang X 2006 Ph. D. Dissertation (MD, USA: University of Maryland, College Park

    [71]

    Griffoni A, Duivenbode J v, Linten D, Simoen E, Rech P, Dilillo L 2011 Proceedings of 2011 12th European Conference on Radiation and Its Effects on Components and Systems, Sevilla, Spain, September 19–23, 2011 pp226–231

    [72]

    Ikpe S A, Lauenstein J M, Carr G A, Hunter D, Ludwing L L, Wood W 2016 Proceedings of 2016 IEEE International Reliability Physics Symposium (IRPS) Pasadena, CA, USA, April 17–21, 2016 p1

    [73]

    Johnson R A, Witulski A F, Ball D R, Galloway K F, Sternberg A L 2019 IEEE Trans. Nucl. Sci. 66 1694Google Scholar

    [74]

    Shoji T, Nishida S, Hamada K, Tadano H 2015 Microelectron. Reliab. 55 1517Google Scholar

    [75]

    Wang H, Gu J, Huang X, Zhang J, Jing Y 2024 Microelectron. Reliab. 154 115344Google Scholar

    [76]

    McPherson J A, Hitchcock C W, Chow T P, Ji W 2020 Mater. Sci. Forum. 1004 889Google Scholar

    [77]

    Zhang Z, Yuan H, Liu K, Zhang Y, Liu Y, Han C 2024 IEEE Electron Device Lett. 45 2495Google Scholar

    [78]

    Zhang N, Tang X, Song Q, Liu K, Zhang Z, Yuan H 2023 Proceedings of 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, May 24–27, 2023 pp1–3

    [79]

    Waskiewicz A E, Groninger J W, Strahan V H, Long D M 1986 IEEE Trans. Nucl. Sci. 33 1710Google Scholar

    [80]

    Lauenstein J M, Casey M, Topper A, Wilcox E, Phan A, Ikpe S, LaBel K 2015 Proceedings of 2015 IEEE Nuclear and Space Radiation Effects Conference (NSREC) Boston, Massachusetts, July 16, 2015 p1

    [81]

    Liu S, Titus J L, Boden M 2007 IEEE Trans. Nucl. Sci. 54 2554Google Scholar

    [82]

    Zhou X, Jia Y, Hu D, Wu Y 2019 IEEE Trans. Electron Devices 66 2551Google Scholar

    [83]

    Wang Y, Lin M, Li X, Wu X, Yang J, Bao M 2019 IEEE Trans. Electron Devices 66 4264Google Scholar

    [84]

    Jiang L, Liu J, Tian X, Chen H, Tang Y, Bai Y 2020 IEEE Trans. Electron Devices 67 3698Google Scholar

    [85]

    林茂 2020 硕士学位论文 (杭州: 杭州电子科技大学)

    Lin M 2020 M. S. Thesis (Hangzhou: Hangzhou Dianzi University

    [86]

    Liao Q, Liu H 2024 Micromachines 15 642Google Scholar

    [87]

    Huang S, Amaratunga A J, Udrea F 2000 IEEE Trans. Nucl. Sci. 47 2640Google Scholar

    [88]

    Zerarka M, Austin P, Morancho F, Isoird K, Arbess H, Tasselli J 2014 IET Circuits Devices Syst. 8 197Google Scholar

    [89]

    Lu J, Liu H, Cai X, Luo J, Li B, Li B, Wang L, Han Z 2018 J. Semicond. 39 034003Google Scholar

    [90]

    Yu C, Wang Y, Cao F, Huang L, Wang Y 2015 IEEE Trans. Electron Devices 62 143Google Scholar

    [91]

    杨余 2023 硕士学位论文 (湖南: 湖南大学)

    Yang Y 2023 M. S. Thesis (Hunan: Hunan University

    [92]

    Wang Y, Liu T, Qian L, Wu H, Yu Y, Tao J, Cheng Z, Hu S 2023 Micromachines 14 688Google Scholar

    [93]

    Sun S, Chen F, Sun Y, Li Y, Yang K, Tang X 2024 Microelectron. Reliab. 164 115569Google Scholar

    [94]

    Ranjan S, Majumder S, Naugarhiya A 2020 Proceedings of 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, February 28–29, 2020 pp272–275

    [95]

    Amjath M, Ranjan S, Naugarhiya A 2022 Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) Bhiai, India, April 21–22, 2022 pp1–5

    [96]

    Darwish M, Yue C, Lui K H, Giles F, Chan B, Chen K I, Pattanayak D, Chen Q, Terrill K, Owyang K 2003 Proceedings of the ISPSD ‘03, 2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, Cambridge, UK, April 14–17 2003 pp24–27

    [97]

    Lu J, Liu H, Luo J, Wang L, Li B, Li B, Zhang G, Han Z 2016 Proceedings of 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS) Bremen, Germany, September 19–23, 2016 pp1–5

    [98]

    Liu Y, Wang Y, Yu C H, Luo X, Cao F 2018 Superlattices Microstruct. 122 165Google Scholar

    [99]

    Liang S, Yang Y, Chen J, Shu L, Wang L, Wang J 2024 IEEE Trans. Device Mater. Reliab. 24 507Google Scholar

    [100]

    Shen P, Wang Y, Li X J, Yang J, Zheng L 2023 Microelectron. Reliab. 142 114931Google Scholar

    [101]

    Kim J, Kim K 2022 IEEE Trans. Device Mater. Reliab. 22 164Google Scholar

    [102]

    Yu Q, Chen W, Huang J, Shen Z, Lin Z, Peng H, Shu H, Li J 2025 Micro Nanostruct. 198 208064Google Scholar

  • [1] 苏乐, 王彩琳, 谭在超, 罗寅, 杨武华, 张超. 功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立. 物理学报, 2024, 73(11): 118501. doi: 10.7498/aps.73.20240144
    [2] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应. 物理学报, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [3] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究. 物理学报, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [4] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [6] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [7] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [8] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型. 物理学报, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [9] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [10] 辛艳辉, 刘红侠, 王树龙, 范小娇. 对称三材料双栅应变硅金属氧化物半导体场效应晶体管二维解析模型. 物理学报, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [11] 陈海峰. 反向衬底偏压下纳米N沟道金属氧化物半导体场效应晶体管中栅调制界面产生电流特性研究. 物理学报, 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [12] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [13] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [14] 范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究. 物理学报, 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [15] 吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 小尺寸应变Si金属氧化物半导体场效应晶体管栅隧穿电流预测模型. 物理学报, 2011, 60(2): 027305. doi: 10.7498/aps.60.027305
    [16] 冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富. 基于单电子晶体管 - 金属氧化物场效应晶体管电路的离散混沌系统实现. 物理学报, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [17] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响. 物理学报, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [18] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [19] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件. 物理学报, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  373
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 修回日期:  2025-04-30
  • 上网日期:  2025-05-10

/

返回文章
返回