-
随着半导体工艺的发展, 具有深沟槽隔离(DTI)技术的双极晶体管因其优异的电气性能和隔离效果, 逐步应用于性能和集成度要求更高的先进半导体器件. 现有的双极晶体管单粒子效应研究表明, 深沟槽隔离技术会导致双极器件产生新的单粒子效应机制. 本文针对深沟槽隔离结构的多晶硅发射极双极晶体管, 开展了质子入射角度对其单粒子效应的影响研究. 实验结果表明, 质子入射角度会显著影响晶体管集电极的单粒子瞬态电压脉冲振幅. 利用Sentaurus TCAD软件模拟了多晶硅发射极双极晶体管的单粒子效应电荷收集过程, 根据模拟结果分析了深沟槽隔离器件的灵敏体积, 并基于Geant4蒙特卡罗模拟方法开展了质子不同角度入射深沟槽器件灵敏体积的模拟, 结果表明, 次级离子在灵敏体积内的积分截面会随着入射角度的增加而增大, 为深沟槽隔离双极晶体管的单粒子效应抗辐射加固提供了理论支撑.
-
关键词:
- 深沟槽隔离 /
- 质子单粒子效应 /
- TCAD数值模拟 /
- Geant4粒子仿真
Deep-trench isolation (DTI) bipolar transistors have been increasingly adopted in high-performance, highly integrated advanced semiconductor devices due to their superior electrical characteristics and isolation capabilities. However, existing research has shown that DTI bipolar transistors exhibit a lower linear energy transfer (LET) threshold for single-event effects (SEEs) and a larger saturated cross-section than traditional structures, making the traditional rectangular parallelepiped (RPP) model unsuitable for such devices. In this study, we investigate the influence of proton incidence angle on single-event effects in high-speed DTI bipolar transistors. Proton multi-angle irradiation experiments reveal that the incidence angle significantly changes the amplitude characteristics of single-event transient voltage pulses at the collector. By introducing a nested sensitive volume in TCAD numerical simulations, the sensitive region of the DTI device is accurately defined. Geant4 simulations further demonstrate that with the increase of proton incidence angle, the integral cross-section of secondary ions in the sensitive volume significantly increases, which is determined to be the primary reason for the voltage amplitudes at the collector and base increasing with augment of tilt angle. This work provides theoretical support for radiation hardening of DTI bipolar transistors against single-event effects. -
Keywords:
- deep trench isolation /
- proton single event effects /
- TCAD numerical simulation /
- Geant4 particle simulation
-
图 6 TCAD模拟重离子入射不同位置后集电极电流与电荷收集的变化 (a) 离子不同位置入射时集电极瞬态电流随时间的变化关系; (b) 集电极电荷收集量随离子入射位置的变化关系
Fig. 6. TCAD Simulation of collector current and charge collection under heavy-ion strikes at different positions: (a) Transient collector current vs. time for ion strikes at different locations; (b) collected charge as a function of ion strike position.
表 1 不同灵敏区域电荷收集效率
Table 1. Charge collection efficiency in different sensitivity regions.
灵敏区域 电荷收集效率/% SV1 31.84 SV2 14.14 SV3 7.99 表 2 60 MeV质子多角度入射后产生的次级粒子信息
Table 2. Information on secondary particles generated by 60 MeV proton incidence at multiple angles.
次级粒子种类
(0°/30°/45°/60°)最高能量/MeV
(0°/30°/45°/60°)LET/(MeV·cm2·mg–1)
(0°/30°/45°/60°)射程/μm
(0°/30°45°/60°)Si 8.1/5.9/6.5/6.6 12.4/11.6/11.9/11.9 4.2/3.4/3.6/3.7 P 6.1/3.2/3.3/3.2 11.3/9.2/9.3/9.2 3.5/2.3/2.4/2.3 O 11.1/8.3/2.2/6.7 6.8/7.0/6.5/7.1 7.8/6.1/2.4/5.1 Ne 11.3/7.0/9.9/10.2 8.9/8.6/8.8/8.9 6.9/4.8/6.2/6.4 Na 11.9/9.5/8.9/7.6 10.3/10.2/10.8/10.0 6.7/5.7/5.5/4.9 Mg 11.5/9.3/8.5/9.0 11.4/11.2/11.0/11.1 6.2/5.4/5.1/5.3 Al 8.2/8.3/7.1/7.3 11.3/11.4/11.0/11.1 4.8/4.9/4.4/4.5 F(仅30°入射) 1.2 5.2 1.6 -
[1] Pease R L 2003 IEEE Tran. Nucl. Sci. 50 539
Google Scholar
[2] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502
Google Scholar
Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502
Google Scholar
[3] 彭超, 雷志锋, 张鸿, 张战刚, 何玉娟 2022 原子能科学技术 56 2187
Google Scholar
Peng C, Lei Z F, Zhang H, Zhang Z G, He Y J 2022 Atom. Energy Sci. Tech. 56 2187
Google Scholar
[4] Rung R D, Momose H, Nagakubo Y 1982 1982 International Electron Devices Meeting San Francisco, USA, December 13-15, 1982 p237
[5] 罗志伟 2022 硕士学位论文(杭州: 浙江大学)
Luo Z W 2022 M. S. Thesis (Hangzhou: Zhejiang University
[6] 李志栓, 汤光洪, 於广军, 杨新刚, 杨富宝 2016 半导体技术 41 933
Li Z S, Yang G H, Yu G J, Yang X G, Yang F B 2016 Semicond. Tech. 41 933
[7] Reed R A, Marshall P W, Ainspan H, Marshall C J, Kim H S, Cressler J D, Niu G, LaBel K A 2001 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No. 01TH8588) p172
[8] Duzellier S, Falguere D, Mouliere L, Ecoffet R, Buisson J 1995 IEEE Tran. Nucl. Sci. 42 1797
Google Scholar
[9] Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Tran. Nucl. Sci. 54 2303
Google Scholar
[10] 黄建国, 韩建伟, 林云龙, 黄治, 路秀琴, 张新, 符长波, 郭继宇, 赵葵 2002 空间科学学报 268
Huang J G, Han J W, Lin Y L, Huang Z, Lu X Q, Zhang X, Fu C B, Guo J Y, Zhao K 2002 Chin. J. Space Sci. 268
[11] Enrique J M, Robert A R, Jonathan A P, Michael L A, Ronald D S, Robert A W, Muthubalan V, Niu G F, Akil K S, Ryan D, Gustavo E, Ramkumar K, Jonathan P C, John D C, Paul W M, Gyorgy V 2008 IEEE Tran. Nucl. Sci. 55 1581
Google Scholar
[12] Stanley D P, Akil K S, Aravind A, Marco B, John D C, Alex G, Gyorgy V, Paul D, Mike M, Robert R, Paul M 2009 IEEE International Reliability Physics Symposium p157-164
[13] 赖祖武, 1998 抗辐射电子学: 辐射效应及加固原理(北京: 国防工业出版社)第16 —18页
Lai Z W 1998 Radiation Effects and Hardening Techniques (Beijing: National Defense Industry Press) pp16—18
[14] Gregory B L, Gwyn C W 1974 Proce. IEEE 62 1264
Google Scholar
[15] 韩郑生, 2011 抗辐射集成电路概论(北京: 清华大学出版社)第8页
Han Z S 2011 Introduction to Radiation Hardened Integrated Circuit (Beijing: Tsinghua University Press) p8
[16] 李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523
Google Scholar
Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523
Google Scholar
[17] 魏佳男, 张小磊, 冯治华, 张培健, 傅婧, 付晓君 2023 微电子学 53 945
Wei J N, Zhang X L, Feng Z H, Zhang J P, Fu Q, Fu X J 2023 Microelectronics 53 945
[18] Sutton Akil K, Moen K, Cressler J D, Carts M A, Marshall P W, PellishJ A, Ramachandran V, Reed R A, Alles M L, Niu G 2008 Solid-State Electronics 52 1652
Google Scholar
[19] 刘默寒, 陆妩, 贾金成, 施炜雷, 王信, 李小龙, 孙静, 郭旗, 吴雪, 张培健 2018 核技术 41 48
Google Scholar
Liu M H, Lu W, Jia J C, Shi W L, Wang X, Li X L, Sun J, Guo Q, Wu X, Zhang P J 2018 Nucl. Techn. 41 48
Google Scholar
[20] 贾金成, 陆妩, 吴雪, 张培健, 孙静, 王信, 李小龙, 刘默寒, 郭旗, 刘元 2018 微电子学 48 120
Jia J C, Lu W, Wu X, Zhang P J, Sun J, Wang X, Li X L, Liu M H, Guo Q, Liu Y 2018 Microelectronics 48 120
[21] 史一凡 2021 硕士学位论文(西安: 西安理工大学)
Shi Y F 2021 M. S. Thesis (Xi’an: Xi’an University of Technology
[22] 冯亚辉 2024 硕士学位论文(湘潭: 湘潭大学)
Feng Y H 2024 M. S. Thesis (Xiangtan: Xiangtan University
[23] 张晋新, 郭红霞, 文林, 郭旗, 崔江维, 范雪, 肖尧, 席善斌, 王信, 邓伟 2013 强激光与粒子束 25 2433
Google Scholar
Zhang J X, Guo H X, Wen Lin, Guo Q, Cui J W, Fan X, Xiao Y, Xi S B, Wang X Deng W 2013 High Power Laser Part. Beams 25 2433
Google Scholar
[24] 张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869
Google Scholar
Zhang J X, Guo H X, Lu L, Wang X, Pan X Y 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 869
Google Scholar
[25] Jonathan A P, Robert A R, Akil K S, , Paul W M, Cheryl J M, Ramkumar K, John D C, Marcus H M, Ronald D S, Kevin M W, Brian D S, Niu G F 2007 IEEE Tran. Nucl. Sci. 54 2322
[26] 曾超, 许献国, 钟乐 2023 太赫兹科学与电子信息学报 21 452
Google Scholar
Zeng C, Xu X G, Zhong L 2023 J. Terahertz Sci. Electron. Inf. Technol. 21 452
Google Scholar
计量
- 文章访问数: 255
- PDF下载量: 5
- 被引次数: 0