搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下镁及典型镁铝合金的电热导率

陈浩 徐远骥 咸家伟 高兴誉 田付阳 宋海峰

引用本文:
Citation:

高温高压下镁及典型镁铝合金的电热导率

陈浩, 徐远骥, 咸家伟, 高兴誉, 田付阳, 宋海峰
cstr: 32037.14.aps.74.20250352

Electrical and thermal conductivity of Mg and typical Mg-Al alloys at high temperature and pressure

CHEN Hao, XU Yuanji, XIAN Jiawei, GAO Xingyu, TIAN Fuyang, SONG Haifeng
cstr: 32037.14.aps.74.20250352
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 金属材料因其优异的电输运性能和良好的散热性能, 在工业领域应用广泛. 高温高压条件下, 实验测量金属的电热导率难度大且成本高, 数值模拟则是一种高效的方法. 本研究基于Kubo-Greenwood (KG) 公式结合第一性原理分子动力学开发了电导率和电子热导率计算软件TREX (TRansport at EXtremes). 采用该软件计算了镁及镁铝合金 AZ31B在300—1200 K和0—50 GPa温压范围内的电导率和电子热导率, 并与玻耳兹曼输运方程的计算结果进行了对比. 应用Slack方程计算其晶格热导率, 结合电子热导率得到了其总热导率. TREX 软件的计算结果与实验测试数据高度吻合, 充分验证了其计算电热导率的准确性, 并系统揭示了电热导率随温度与压强的变化规律. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00128中访问获取.
    Metallic materials are widely used in the industrial field due to their excellent electrical transport properties and superior thermal dissipation performance. However, experimental measurements of electrical and thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This makes numerical simulation an efficient alternative solution. In this study, we develop a computational software named TREX (TRansport at EXtremes). It is based on the Kubo-Greenwood (KG) formula combined with first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we systematically investigate their electrical and thermal transport properties. The temperature and pressure are in a range of 300−1200 K and 0−50 GPa, respectively. The method involves using first-principles molecular dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical conductivity and electronic thermal conductivity are calculated using the KG formula. Lattice thermal conductivity is determined by the Slack equation. To validate the reliability of our approach, we perform comparative calculations by using the Boltzmann transport equation. The research results are cross-verified with experimental data from Sichuan University and the Aerospace Materials Test and Analysis Center. The findings demonstrate that the maximum relative error between computational and experimental results is within 20%. This confirms the accuracy of our method. Additionally, we elucidate the variation patterns of electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in AZ31B alloy. The TREX program developed in this study and the established performance dataset provide essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in metallic materials under extreme conditions, and also for engineering applications. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00128.
      通信作者: 咸家伟, xian_jiawei@iapcm.ac.cn ; 田付阳, fuyang@ustb.edu.cn
    • 基金项目: 计算物理全国重点实验室基金和国家自然科学基金(批准号: 52371174, 12204033)资助的课题.
      Corresponding author: XIAN Jiawei, xian_jiawei@iapcm.ac.cn ; TIAN Fuyang, fuyang@ustb.edu.cn
    • Funds: Project supported by the Funding of National Key Laboratory of Computational Physics and the National Natural Science Foundation of China (Grant Nos. 52371174, 12204033).
    [1]

    王奥, 盛宇飞, 鲍华 2024 物理学报 73 037201Google Scholar

    Wang A, Shen Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [2]

    Ventura G, Perfetti M 2014 Electrical and Thermal Conductivity (Dordrecht: Springer Netherlands) pp131–168

    [3]

    Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D 2016 Prog. Polym. Sci. 61 1Google Scholar

    [4]

    Reif-Acherman S 2011 Revista Brasileira de Ensino de Física 33 4602Google Scholar

    [5]

    Demyanov G S, Knyazev D V, Levashov P R 2022 Phys. Rev. E 105 035307Google Scholar

    [6]

    Vlček V, De Koker N, Steinle-Neumann G 2012 Phys. Rev. B 85 184201Google Scholar

    [7]

    Naumov I I, Hemley R J 2015 Phys. Rev. Lett. 114 156403Google Scholar

    [8]

    Matsuoka T, Shimizu K 2009 Nature 458 186Google Scholar

    [9]

    Kietzmann A, Redmer R, Desjarlais M P, Mattsson T R 2008 Phys. Rev. Lett. 101 070401Google Scholar

    [10]

    崔洋, 李寿航, 应韬, 鲍华, 曾小勤 2021 金属学报 57 375Google Scholar

    Yang C, Li S H, Ying T, Bao H, Zeng X Q 2021 Acta Metallurgica Sinica 57 375Google Scholar

    [11]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill) pp483–522

    [12]

    Bulusu A, Walker D 2008 Superlattices Microstruct. 44 1Google Scholar

    [13]

    Migdal K, Zhakhovsky V, Yanilkin A, Petrov Y V, Inogamov N 2019 Appl. Surf. Sci. 478 818Google Scholar

    [14]

    Calderín L, Karasiev V, Trickey S 2017 Comput. Phys. Commun. 221 118Google Scholar

    [15]

    French M, Mattsson T R 2014 Phys. Rev. B 90 165113Google Scholar

    [16]

    Kramer D A 2010 Springer Handbook of Materials Data (Cham: Springer International Publishing) pp151–159

    [17]

    Zhang Q, Fu J, Zhou J, Qi L, Li H 2024 Chem. Eng. J. 496 154023Google Scholar

    [18]

    Xin W, Wang S, Yan Z 2025 Mater. Today Commun. 43 111584Google Scholar

    [19]

    Madsen G K, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [20]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [21]

    Moseley L, Lukes T 1978 Am. J. Phys 46 676Google Scholar

    [22]

    Knyazev D V, Levashov P R 2019 Contrib. Plasma Phys. 59 345Google Scholar

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Blöchl P 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Kubo R, Yokota M, Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203Google Scholar

    [30]

    Tian F, Lin D Y, Gao X, Zhao Y F, Song H F 2020 J. Chem. Phys. 153 034101Google Scholar

    [31]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E 66 025401Google Scholar

    [32]

    Choi G, Kim H S, Lee K, Park S H, Cha J, Chung I, Lee W B 2017 J. Alloys Compd. 727 1237Google Scholar

    [33]

    Ahmad S, Mahanti S D 2010 Phys. Rev. B 81 165203Google Scholar

    [34]

    Lang H N D, van Kempen H, Wyder P 1978 J. Phys. F: Met. Phys. 8 L39Google Scholar

    [35]

    Iida T, Guthrie R I L 1988 The Physical Properties of Liquid Metals (New York: Oxford Clarendon Press) pp266–253

    [36]

    Pan H, Pan F, Wang X, Peng J, Gou J, She J, Tang A 2013 Int. J. Thermophys. 34 1336Google Scholar

    [37]

    Chen F, Huang Q, Jiang Z, Zhao J, Sun B, Li Y 2015 Vacuum 115 80Google Scholar

    [38]

    Motta C, El-Mellouhi F, Sanvito S 2015 Sci. Rep. 5 12746Google Scholar

    [39]

    Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [40]

    Yue S Y, Zhang X, Stackhouse S, Qin G, Di Napoli E, Hu M 2016 Phys. Rev. B 94 075149Google Scholar

    [41]

    Blakemore J S 1985 Solid State Physics (Cambridge: Cambridge University Press) pp149–292

    [42]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [43]

    Ying T, Zheng M, Li Z, Qiao X 2014 J. Alloys Compd. 608 19Google Scholar

  • 图 2  512个原子的AZ31B合金超胞结构示意图(蓝色原子表示镁, 红色原子表示铝)

    Fig. 2.  Schematic diagram of the supercell structure of AZ31B alloy with 512 atoms. Blue atoms represent magnesium, and red atoms represent aluminum.

    图 1  TREX程序(基于KG公式与AIMD模拟) 计算电导率和电子热导率的流程示意图. 红色虚线框表示TREX程序的核心功能(包括平衡构型提取、电子输运性质计算等); 蓝色框表示与第一性原理计算软件相关的计算内容(如第一性原理分子动力学、电子结构、跃迁矩阵等)

    Fig. 1.  Schematic diagram of the workflow for calculating electrical conductivity and electronic thermal conductivity using the TREX code (based on the Kubo-Greenwood formula and AIMD simulations). The red dashed box indicates the core functions of the TREX code (including equilibrium configuration extraction, electronic transport property calculations, etc.). The blue boxes represent calculations related to first-principles software (such as ab initio molecular dynamics, electronic structure, and transition matrices).

    图 3  (a)镁单质电导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度; (b) AZ31B合金电导率计算结果与实验值对比图, 黑色(红色、蓝色) 图例表示0 GPa (40, 50 GPa)的实验和计算结果

    Fig. 3.  (a) Comparison between the calculated electrical conductivity of magnesium single crystal and the experimental values, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure; (b) the comparison between the calculated electrical conductivity of AZ31B alloy and the experimental values, where the black (red, blue) legend represents the experimental and calculated results at 0 GPa (40, 50 GPa).

    图 4  (a)镁的热导率各分项贡献的组成; (b) AZ31B合金的热导率各分项贡献的组成, 实线和实心(虚线和空心) 图例表示0 GPa (40 GPa) 的计算结果. ETC表示电子热导率, LTC表示晶格热导率, TTC表示总热导率

    Fig. 4.  (a) Composition of various contributions to the thermal conductivity of magnesium; (b) the composition of different contributions to the thermal conductivity of AZ31B alloy, where solid lines and solid symbols (dashed lines and hollow symbols) represent the calculated results at 0 GPa (40 GPa). Here, ETC denotes the electronic thermal conductivity, LTC represents the lattice thermal conductivity, and TTC stands for the total thermal conductivity.

    图 5  (a)镁单质热导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度; (b) AZ31B合金热导率计算结果与实验值对比图, 黑色(红色) 图例表示0 GPa (40 GPa) 的实验和计算结果, 红色虚线表示对40 GPa实验结果的线性拟合

    Fig. 5.  (a) A comparison between the calculated and experimental values of thermal conductivity for pure magnesium, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure; (b) a comparison between the calculated and experimental values of thermal conductivity for AZ31B alloy, where black (red) symbols represent the experimental and computational results at 0 GPa (40 GPa), and the red dashed line denotes the linear fit to the experimental data at 40 GPa.

    表 1  电子弛豫时间τ (单位: 10–14 s) 随温度T变化的拟合公式$ \tau=AT^{-r} $

    Table 1.  Fitting formula for the electron relaxation time τ (unit: 10–14 s) as a function of temperature T is given by $ \tau = A T^{-r} $.

    材料 压强/GPa 参数A 参数r R2
    Mg 0 1306.36 1.12 0.9999
    AZ31B 0 52.54 0.58 0.9976
    AZ31B 40 230.74 0.76 0.9953
    AZ31B 50 182.05 0.73 0.9993
    下载: 导出CSV
  • [1]

    王奥, 盛宇飞, 鲍华 2024 物理学报 73 037201Google Scholar

    Wang A, Shen Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [2]

    Ventura G, Perfetti M 2014 Electrical and Thermal Conductivity (Dordrecht: Springer Netherlands) pp131–168

    [3]

    Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D 2016 Prog. Polym. Sci. 61 1Google Scholar

    [4]

    Reif-Acherman S 2011 Revista Brasileira de Ensino de Física 33 4602Google Scholar

    [5]

    Demyanov G S, Knyazev D V, Levashov P R 2022 Phys. Rev. E 105 035307Google Scholar

    [6]

    Vlček V, De Koker N, Steinle-Neumann G 2012 Phys. Rev. B 85 184201Google Scholar

    [7]

    Naumov I I, Hemley R J 2015 Phys. Rev. Lett. 114 156403Google Scholar

    [8]

    Matsuoka T, Shimizu K 2009 Nature 458 186Google Scholar

    [9]

    Kietzmann A, Redmer R, Desjarlais M P, Mattsson T R 2008 Phys. Rev. Lett. 101 070401Google Scholar

    [10]

    崔洋, 李寿航, 应韬, 鲍华, 曾小勤 2021 金属学报 57 375Google Scholar

    Yang C, Li S H, Ying T, Bao H, Zeng X Q 2021 Acta Metallurgica Sinica 57 375Google Scholar

    [11]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill) pp483–522

    [12]

    Bulusu A, Walker D 2008 Superlattices Microstruct. 44 1Google Scholar

    [13]

    Migdal K, Zhakhovsky V, Yanilkin A, Petrov Y V, Inogamov N 2019 Appl. Surf. Sci. 478 818Google Scholar

    [14]

    Calderín L, Karasiev V, Trickey S 2017 Comput. Phys. Commun. 221 118Google Scholar

    [15]

    French M, Mattsson T R 2014 Phys. Rev. B 90 165113Google Scholar

    [16]

    Kramer D A 2010 Springer Handbook of Materials Data (Cham: Springer International Publishing) pp151–159

    [17]

    Zhang Q, Fu J, Zhou J, Qi L, Li H 2024 Chem. Eng. J. 496 154023Google Scholar

    [18]

    Xin W, Wang S, Yan Z 2025 Mater. Today Commun. 43 111584Google Scholar

    [19]

    Madsen G K, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [20]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [21]

    Moseley L, Lukes T 1978 Am. J. Phys 46 676Google Scholar

    [22]

    Knyazev D V, Levashov P R 2019 Contrib. Plasma Phys. 59 345Google Scholar

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Blöchl P 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Kubo R, Yokota M, Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203Google Scholar

    [30]

    Tian F, Lin D Y, Gao X, Zhao Y F, Song H F 2020 J. Chem. Phys. 153 034101Google Scholar

    [31]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E 66 025401Google Scholar

    [32]

    Choi G, Kim H S, Lee K, Park S H, Cha J, Chung I, Lee W B 2017 J. Alloys Compd. 727 1237Google Scholar

    [33]

    Ahmad S, Mahanti S D 2010 Phys. Rev. B 81 165203Google Scholar

    [34]

    Lang H N D, van Kempen H, Wyder P 1978 J. Phys. F: Met. Phys. 8 L39Google Scholar

    [35]

    Iida T, Guthrie R I L 1988 The Physical Properties of Liquid Metals (New York: Oxford Clarendon Press) pp266–253

    [36]

    Pan H, Pan F, Wang X, Peng J, Gou J, She J, Tang A 2013 Int. J. Thermophys. 34 1336Google Scholar

    [37]

    Chen F, Huang Q, Jiang Z, Zhao J, Sun B, Li Y 2015 Vacuum 115 80Google Scholar

    [38]

    Motta C, El-Mellouhi F, Sanvito S 2015 Sci. Rep. 5 12746Google Scholar

    [39]

    Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [40]

    Yue S Y, Zhang X, Stackhouse S, Qin G, Di Napoli E, Hu M 2016 Phys. Rev. B 94 075149Google Scholar

    [41]

    Blakemore J S 1985 Solid State Physics (Cambridge: Cambridge University Press) pp149–292

    [42]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [43]

    Ying T, Zheng M, Li Z, Qiao X 2014 J. Alloys Compd. 608 19Google Scholar

  • [1] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] 郑建军, 张丽萍. 单层Cu2X的热电性质. 物理学报, 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [5] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [6] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [7] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [8] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [9] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [10] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [11] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [12] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [13] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [14] 何国荣, 郑婉华, 渠红伟, 杨国华, 王 青, 曹玉莲, 陈良惠. 键合界面对面发射激光器光与热性质的影响. 物理学报, 2008, 57(3): 1840-1845. doi: 10.7498/aps.57.1840
    [15] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [16] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [17] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [18] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能. 物理学报, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [20] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
计量
  • 文章访问数:  204
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-05-18
  • 上网日期:  2025-06-04

/

返回文章
返回