搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络和动力学模拟方法研究高温N2-O2态-态碰撞振动激发和解离过程

郭昌敏 张红 程新路

引用本文:
Citation:

基于神经网络和动力学模拟方法研究高温N2-O2态-态碰撞振动激发和解离过程

郭昌敏, 张红, 程新路

Study of vibrational excitation and dissociation processes in high-temperature N2-O2 state-to-state collisions based on neural network and kinetic simulation method

Changmin Guo, Hong Zhang, Xinlu Cheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 散射截面和反应速率系数是阐明分子气体态-态碰撞传能机制的重要参数,也是进行非平衡气体动力学建模的重要依据。本文采用动力学模拟中的准经典轨迹方法( QCT)计算了90个不同初始振动态组合的N2(v)+O2(w)碰撞过程,详细讨论了各个振动激发、解离反应通道的贡献和演变趋势。研究发现,O2和N2在振动-振动能量交换( VV)通道的贡献比较接近,振动-平动跃迁( VT)通道主要以O2为主;总解离截面主要来自O2单解离通道,交换解离其次,N2单解离和双解离通道的贡献相对较小。基于QCT数据集,训练了性能良好的神经网络模型(相关系数R值达到0.99) ,可用于预测N2+O2态-态碰撞的总解离截面。和仅采用动力学模拟方法相比,计算成本降低了约91.94%。在5000-30000K高温范围内,给出了VV/VT速率系数的解析表达式。
    The scattering cross-sections and reaction rate coefficients are crucial parameters for elucidating the energy transfer mechanism of state-to-state collisions between molecular gases and also serve as a fundamental basis for modeling the non-equilibrium flow field. However, the database of kinetic processes related to nitrogen shock flows is still being developed. In this work, a detailed kinetic study of the N2+O2 collision is carried out by combining the quasi-classical trajectory method (QCT) and neural network model (NN). Firstly, QCT is used to calculate 90 N2(v)+O2(w) processes with various initial vibrational states (v,w), and the contributions of all vibrational excitation and dissociation reaction channels are discussed. The following conclusions were drawn: i) the contributions of the vibration-vibration (VV) energy exchange channel of O2 and N2 are similar, while the vibration-translational (VT) transition mainly occurs on O2; and ii) the total dissociation cross-section primarily results from the O2 single-dissociation channel, followed by the exchange-dissociation channel, with relatively minor contributions from the N2 single- and double-dissociation channels. Then, based on the QCT dataset, a high-performance NN model (R-value of 0.99) is trained to predict the total dissociation cross-section caused by N2(v)+O2(w) collisions. Compared to the method using only QCT, the computational cost is reduced by approximately 91.94%. Finally, to facilitate use in kinetic modeling, Arrhenius-type fits for the VV/VT rate coefficients are provided over the temperature range of 5000-30000K, and an exponential form related to the translational energy Et was used to fit the total dissociation cross-section.
  • [1]

    Wang Q Y, Cong K L, Liu L L, Lu H Z, Xu S J 2017 Phys. of Gases 24 (in Chinese) [王庆洋, 丛堃林, 刘丽丽, 陆宏志, 徐胜金2017气体物理2 4]

    [2]

    Lu D R, Chen Z Y, Guo X, Tian W S 2017 Advance in Mechanics 396 (in Chinese) [吕达仁, 陈泽宇, 郭霞, 田文寿2017力学进展396]

    [3]

    Dong W Z, DIing M S, Gao T S, Jiang T 2013 Acta Aerodynamica Sinica 36 (in Chinese) [董维中, 丁明松, 高铁锁, 江涛2013空气动力学学报3 6]

    [4]

    Guo Y J, Zeng L, Zhang H Y, Dai G Y, Wang A L, Qiu B, Zhou S G, Liu X 2017 Acta Aerodynamica Sinica 354 (in Chinese) [国义军, 曾磊, 张昊元, 代光月, 王安龄, 邱波, 周述光, 刘骁2017空气动力学学报354]

    [5]

    M. Cacciatore 1996 Molecular Physics and Hypersonic Flows 48221

    [6]

    Pavlov A V 2011 Geomagn. Aeron. 51143

    [7]

    Treanor C E 1965 J. Chem. Phys. 43532

    [8]

    Nagnibeda E, Papina K, Kunova O 2018 AIP Conf. Proc. 1060012

    [9]

    Laux C O, Pierrot L, Gessman R J 2012 Chem. Phys. 39846

    [10]

    Zhao X, Xu X, Xu H 2024 J. Chem. Phys. 161231101

    [11]

    Hong Q, Bartolomei M, Pirani F, Sun Q, Coletti C 2025 J. Chem. Phys. 162114308

    [12]

    Feng D, Song Y, Wang Z, Yang L, Zhang Z, Yang Y 2025 J. Chem. Phys. 162114107

    [13]

    He D, Liu T, Li R, Hong Q, Li F, Sun Q, Si T, Luo X 2024 J. Chem. Phys. 161244302

    [14]

    Andrienko D, Boyd I D 201755th AIAA Aerospace Sciences Meeting Grapevine Texas, January 9-13, 2017 p0659

    [15]

    Kurnosov A K, Napartovich A P, Shnyrev S L, Cacciatore M 2010 Plasma Sources Sci. Technol. 19045015

    [16]

    Esposito F, Garcia E, Laganà A 2017 Plasma Sources Sci. Technol. 26045005

    [17]

    Lino Da Silva M, Loureiro J, Guerra V 2012 Chem. Phys. Lett. 53128

    [18]

    Varga Z, Meana-Pañeda R, Song G, Paukku Y, Truhlar D G 2016 J. Chem. Phys. 144024310

    [19]

    Garcia E, Verdasco J E, Laganà A 2020 J. Phys. Chem. A 1246445

    [20]

    Andrienko D A, Boyd I D 2018 J. Chem. Phys. 148084309

    [21]

    Garcia E, Pirani F, Laganà A, Martí C 2017 Phys. Chem. Chem. Phys. 1911206

    [22]

    Garcia E, Laganà A, Pirani F, Bartolomei M, Cacciatore M, Kurnosov A 2016 J. Phys. Chem. A 1205208

    [23]

    Billing G D and Jolicard G 1982 Chem. Phys. 65323

    [24]

    Billing G D 1994 Chem. Phys. 179463

    [25]

    Garcia E, Kurnosov A, Laganà A, Pirani F, Bartolomei M, Cacciatore M 2016 J. Phys. Chem. B 1201476

    [26]

    Koner D, Unke O T, Boe K, Bemish R J, Meuwly M 2019 J. Chem. Phys. 150211101

    [27]

    Chen J, Li J, Bowman J M, Guo H 2020 J. Chem. Phys. 153054310

    [28]

    Hong Q, Storchi L, Bartolomei M, Pirani F, Sun Q, Coletti C 2023 Eur. Phys. J. D 77128

    [29]

    Gu K M, Zhang H, Cheng X L 2023 J. Chem. Phys. 158244302

    [30]

    Huang X, Gu K M, Guo C M, Cheng X L 2023 Phys. Chem. Chem. Phys. 2529475

    [31]

    Guo C M, Zhang H, Cheng X L 2024 J. Phys. Chem. A 1285435

    [32]

    Bernstein R B, Bederson B 1980 Phys. Today 3379

    [33]

    Fernández-Ramos A, Miller J A, Klippenstein S J, Truhlar D G 2006 Chem. Rev. 1064518

    [34]

    Hu X, Hase W L, Pirraglia T 1991 J. Comput. Chem. 121014

    [35]

    Gutzwiller M C 1990 Chaos in classical and quantum mechanics (Berlin: Springer)

    [36]

    Chaudhry R S, Bender J D, Valentini P, Schwartzentruber T E, Candler G V 201646th AIAA Thermophysics Conference Washington, June 13-17, 2016 p4319

    [37]

    Mankodi T K, Bhandarkar U V, Myong R S 2020 Phys. Fluids 32036102

    [38]

    Andrienko D, Boyd I D 201747th AIAA Thermophysics Conference Denver, Colorado, June 5-9, 2017 p3163

    [39]

    Andrienko D, Boyd I D 2018 J. Thermophys Heat Transfer Atlanta 324

    [40]

    Rumelhart D E, Hintont G E, Williams R J 1986 Nature 3236088

    [41]

    Moré J J 1978 Numerical Analysis Berlin, Heidelberg, 1978 pp105

    [42]

    Chaudhry R S, Candler G V 2019 AIAA Scitech Forum San Diego, California, January 7-11, 2019 p0789

    [43]

    Mankodi T K, Bhandarkar U V, Puranik B P 2018 J. Chem. Phys. 148144305

  • [1] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究. 物理学报, doi: 10.7498/aps.73.20231832
    [2] 杨莹, 曹怀信. 量子混合态的两种神经网络表示. 物理学报, doi: 10.7498/aps.72.20221905
    [3] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质. 物理学报, doi: 10.7498/aps.64.173401
    [4] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响. 物理学报, doi: 10.7498/aps.63.023402
    [5] 瞿定荣, 范凤英, 宋增云. 光化学反应中氩气对激发态锂原子猝灭速率研究. 物理学报, doi: 10.7498/aps.63.032801
    [6] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面. 物理学报, doi: 10.7498/aps.60.023401
    [7] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, doi: 10.7498/aps.59.7815
    [8] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究. 物理学报, doi: 10.7498/aps.59.937
    [9] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究. 物理学报, doi: 10.7498/aps.58.3827
    [10] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, doi: 10.7498/aps.58.6932
    [11] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, doi: 10.7498/aps.57.143
    [12] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究. 物理学报, doi: 10.7498/aps.57.4143
    [13] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, doi: 10.7498/aps.56.3166
    [14] 郑敦胜, 郭锡坤. 高激发振动态氰化氢分子的解离研究. 物理学报, doi: 10.7498/aps.53.3347
    [15] 谭 文, 王耀南, 周少武, 刘祖润. 混沌时间序列的模糊神经网络预测. 物理学报, doi: 10.7498/aps.52.795
    [16] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析. 物理学报, doi: 10.7498/aps.50.2303
    [17] 方泉玉, 蔡 蔚, 邹 宇, 李 萍. 推广Bethe公式:Au50+离子的偶极激发的碰撞强度和速率系数. 物理学报, doi: 10.7498/aps.47.1612
    [18] 方泉玉, 蔡蔚, 沈智军, 邹宇, 李萍, 徐元光. 电子与类锂离子碰撞激发截面和速率系数. 物理学报, doi: 10.7498/aps.45.1641
    [19] 马余强, 张玥明, 龚昌德. Hopfield神经网络模型的恢复特性. 物理学报, doi: 10.7498/aps.42.1356
    [20] 倪光炯. 介子态的对振动模型. 物理学报, doi: 10.7498/aps.25.336
计量
  • 文章访问数:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回