搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体旋转影响下的溶液法6英寸SiC单晶生长研究

杨垚 李早阳 高俊浩 祁冲冲 李登辇 武光辉 刘立军

引用本文:
Citation:

晶体旋转影响下的溶液法6英寸SiC单晶生长研究

杨垚, 李早阳, 高俊浩, 祁冲冲, 李登辇, 武光辉, 刘立军

Effects of crystal rotation on SiC crystal growth by top-seeded solution growth method

YANG Yao, LI Zaoyang, GAO Junhao, QI Chongchong, LI Dengnian, WU Guanghui, LIU Lijun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 溶液法是生长低缺陷高品质碳化硅(SiC)单晶的重要方法,针对6英寸溶液法生长SiC单晶系统,建立了感应加热和热质传递全局数值分析模型,考虑了洛伦兹力、离心力、热浮力以及表面张力对溶液流动的耦合作用,研究了晶体旋转对溶液中速度场、温度场、碳浓度场、晶体生长速率以及坩埚壁面碳溶解析出的影响规律。结果表明,溶液中洛伦兹力的存在使得低晶体转速下的流场十分复杂,晶体转速需要控制在合适的范围内,使得生长界面下方由输运决定的碳浓度分布与生长界面处由温度决定的碳浓度分布相协调,才能获得均匀且高的SiC单晶生长速率。晶体转速过小使得SiC单晶生长速率很低,过大导致生长速率径向均匀性下降,转速为25 rpm时SiC单晶的平均生长速率较高且沿径向分布均匀性较好。进一步分析了溶液—坩埚交界面碳组分的溶解和析出,定位了坩埚壁面溶解较快区域和SiC多晶颗粒生成区域,并结合速度场预测了多晶颗粒的去向。研究结果为溶液法生长6英寸SiC单晶提供了科学依据。
    The top-seeded solution growth (TSSG) method is a critical technique for growing low-defect and high-quality silicon carbide (SiC) single crystals. A comprehensive numerical analysis model including induction heating, heat and mass transfer was developed for the growth of 6-inch SiC single crystals. The coupling effects of Lorentz force, centrifugal force, thermal buoyancy force and surface tension on the solution flow were considered, and the effects of crystal rotation speed on the velocity field, temperature field, carbon concentration field, crystal growth rate and carbon dissolution and precipitation on the crucible wall were systematically investigated. The results indicate that the Lorentz force in the solution results in a more complex flow field at low crystal rotation speeds. The crystal rotation speed should be controlled within the appropriate range to ensure that the carbon concentration distribution beneath the growth interface determined by the transport mode is coordinated with that at the growth interface determined by the temperature, which is beneficial for the uniform and high growth rate of SiC single crystals. Low rotation speeds reduce the growth rate of SiC single crystals, while high rotation speeds lead to a decrease in radial uniformity of growth rate. At the rotation speed of 25 rpm, the average growth rate of SiC single crystals is higher and the radial distribution uniformity is better. Further analysis is conducted on the dissolution and precipitation of carbon at the solution-crucible interface, and the regions where the crucible wall dissolves quickly and where SiC polycrystalline particles are generated are located. The transport directions of polycrystalline particles are predicted based on the velocity field. The research results provide a scientific basis for the growth of 6-inch SiC single crystals by TSSG method.
  • [1]

    Matsunami H, Kimoto T 1997 Mater. Sci. Eng. R-Rep. 20125

    [2]

    Meyer C, Philip P 2005 Cryst. Growth Des. 51145

    [3]

    Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72267(in Chinese) [刘东静, 周福, 陈帅阳, 胡志亮2023 Acta Phys. Sin. 72267]

    [4]

    Yang N J, Song B, Wang W J, Li H 2022 Crystengcomm 243475

    [5]

    Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62329

    [6]

    Xiao S Y, Harada S, Murayama K, Ujihara T 2016 Cryst. Growth Des. 165136

    [7]

    Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Takeda Y 2008 J. Cryst. Growth 3101438

    [8]

    Wang G B, Sheng D, Li H, Zhang Z S, Guo L L, Guo Z N, Yuan W X, Wang W J, Chen X L 2023 Crystengcomm 25560

    [9]

    Umezaki T, Koike D, Horio A, Harada S, Ujihara T 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, 2014 p63-66

    [10]

    Dang Y F, Zhu C, Ikumi M, Takaishi M, Yu W C, Huang W, Liu X B, Kutsukake K, Harada S, Tagawa M, Ujihara T 2021 Crystengcomm 231982

    [11]

    Yamamoto T, Okano Y, Ujihara T, Dost S 2017 J. Cryst. Growth 47075

    [12]

    Umezaki T, Koike D, Harada S, Ujihara T 2016 Jpn. J. Appl. Phys. 551256015

    [13]

    Mercier F, Dedulle J M, Chaussende D, Pons M 2010 J. Cryst. Growth 312155

    [14]

    Ha M T, Shin Y J, Lee M H, Kim C J, Jeong S M 2018 Phys. Status Solidi A-Appl. Mat. 21517010179

    [15]

    Kusunoki K, Kishida Y, Seki K 2019 Mater. Sci. Forum (Switzerland) 96385

    [16]

    Ha M T, Shin Y J, Bae S Y, Park S Y, Jeong S M 2019 J. Korean Ceram. Soc. 56589

    [17]

    Su Hun C, Young Gon K, Yun Ji S, Seong Min J, Myung Hyun L, Chae Young L, Jeong Min C, Mi Seon P, Yeon Suk J, Won Jae L 2018 Mater. Sci. Forum (Switzerland) 92427

    [18]

    Liu B T, Yu Y, Tang X, Gao B 2020 J. Cryst. Growth 5331254066

    [19]

    Yoon J Y, Lee M H, Kim Y, Seo W S, Shul Y G, Lee W J, Jeong S M 2017 Jpn. J. Appl. Phys. 560655014

    [20]

    Li F C, He L, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2023 J. Cryst. Growth 6071271127

    [21]

    Sui Z R, Xu L B, Cui C, Wang R, Pi X D, Yang D R, Han X F 2024 Crystengcomm 261022

    [22]

    Fujii K, Takei K, Aoshima M, Senguttuvan N, Hiratani M, Ujihara T, Matsumoto Y, Kato T, Kurashige K, Okumura H 2015 Mater. Sci. Forum (Switzerland) 821-82335

    [23]

    Liu Y H, Li M Y, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2024 J. Cryst. Growth 6431278018

    [24]

    Mercier F, Nishizawa S 20118th European Conference on Silicon Carbide and Related Materials Sundvolden Conf Ctr, Oslo, NORWAY, Aug 29-Sep 02 p32-35

    [25]

    Ariyawong K, Dedulle J M, Chaussende D 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, Sep 29-Oct 04 p71-74

    [26]

    Mercier F, Nishizawa S 2013 J. Cryst. Growth 36299

    [27]

    Wang L, Horiuchi T, Sekimoto A, Okano Y, Ujihara T, Dost S 2018 J. Cryst. Growth 498140

    [28]

    Ha M T, Lich L V, Shin Y J, Bae S Y, Lee M H, Jeong S M 2020 Materials 1365110

    [29]

    Wang L, Takehara Y, Sekimoto A, Okano Y, Ujihara T, Dost S 2020 Crystals 1011112

    [30]

    Li Z Y, Yang Y, Wang J L, Luo J P, Liu L J 2024 Proceedings of the 11th International Workshop on Modeling in Crystal Growth, ROMANIA, September 22-25, p573198

    [31]

    Weiss J, Csendes Z J 1982 Ieee Transactions on Power Apparatus and Systems 1013796

    [32]

    Tavakoli M H 2008 Cryst. Growth Des. 8483

    [33]

    Lefebure J, Dedulle J M, Ouisse T, Chaussende D 2012 Cryst. Growth Des. 12909

    [34]

    Liu B T, Yu Y, Tang X, Gao B 2019 J. Cryst. Growth 527125248

    [35]

    Hayashi Y, Mitani T, Komatsu N, Kato T, Okumura H 2019 J. Cryst. Growth 523125151

  • [1] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, doi: 10.7498/aps.73.20240082
    [2] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, doi: 10.7498/aps.72.20221476
    [3] 荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰. 高负偏光照稳定性的溶液法像素级IZTO TFT. 物理学报, doi: 10.7498/aps.71.20220154
    [4] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, doi: 10.7498/aps.69.20191755
    [5] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, doi: 10.7498/aps.68.20190126
    [6] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, doi: 10.7498/aps.68.20190355
    [7] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, doi: 10.7498/aps.65.128502
    [8] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, doi: 10.7498/aps.64.114501
    [9] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型. 物理学报, doi: 10.7498/aps.64.054704
    [10] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, doi: 10.7498/aps.62.228101
    [11] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, doi: 10.7498/aps.62.204702
    [12] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, doi: 10.7498/aps.59.2582
    [13] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, doi: 10.7498/aps.59.7417
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, doi: 10.7498/aps.59.1870
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, doi: 10.7498/aps.58.3268
    [16] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, doi: 10.7498/aps.58.3173
    [17] 罗翀, 孟志国, 王烁, 熊绍珍. 溶液法铝诱导晶化制备多晶硅薄膜. 物理学报, doi: 10.7498/aps.58.6560
    [18] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, doi: 10.7498/aps.57.5290
    [19] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, doi: 10.7498/aps.51.2556
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回