搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铯基准钟与光抽运守时型小铯钟的时间尺度算法

宋会杰 董绍武 王翔 章宇 郭栋 武文俊 吴丹 王心亮 刘丹丹

引用本文:
Citation:

基于铯基准钟与光抽运守时型小铯钟的时间尺度算法

宋会杰, 董绍武, 王翔, 章宇, 郭栋, 武文俊, 吴丹, 王心亮, 刘丹丹

Time scale algorithm based on cesium atomic fountain clock and optically pumped small cesium clocks

SONG Huijie, DONG Shaowu, WANG Xiang, ZHANG Yu, GUO Dong, WU Wenjun, WU Dan, WANG Xinliang, LIU Dandan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 实现国家标准时间的自主可控在当前的国际形式下具有重要现实意义. 本文通过研究基于自研铯基准钟和国产光抽运守时小铯钟, 产生一个独立的、不依赖于外部参考的时间尺度. 具体做法是将铯基准钟作为频率参考, 用于预报光抽运守时小铯钟的频率漂移. 通过分析光抽运守时小铯钟的噪声特性, 建立了原子钟的状态方程, 基于Kalman滤波算法估计光抽运守时小铯钟的状态. 时间尺度的计算是基于原子钟的频率状态估计和频率漂移状态估计作为预报值, 通过权重算法实现. 研究了基于预测误差的权重算法和噪声特性的权重算法, 结果表明利用Kalman滤波状态估计的情况下, 基于预测误差的权重算法显著提升了独立时间尺度的准确度. 选用铯基准钟作为频率参考, 用于预报光抽运守时小铯钟的频率漂移, 计算得到的独立时间尺度的准确度和长期稳定度明显优于时间尺度本身作为频率参考的情况. 以国际标准时间UTCr为参考得出独立时间尺度的准确度保持在15 ns以内. 取样间隔为1 d的频率稳定度为1.57 × 10–14, 取样间隔为15 d的频率稳定度为4.29 × 10–15, 取样间隔为30 d的频率稳定度为2.87 × 10–15. 可满足当前国家用时需求.
    Realizing the independent control of the national standard time has important practical significance under the current international situation. In this work, an independent time scale that does not rely on external references is developed by studying the self-developed cesium fountain primary frequency standard and domestically-produced optically-pumped small cesium clocks. The specific approach is to use the cesium fountain primary frequency standard as a frequency reference to predict the frequency drift of the optically pumped small cesium clocks. By analyzing the noise characteristics of the optically pumped small cesium clocks, the state equation of the atomic clock is established, and the state of the optically pumped small cesium clock is estimated based on the Kalman filtering algorithm. The calculation of the time scale is based on the frequency state estimation and frequency drift state estimation of atomic clocks, which serve as the forecast values, and is achieved through the weight algorithm. The weight algorithm based on prediction error and the weight algorithm based on noise characteristics are studied. The results show that in the case of using Kalman filtering state estimation, the weight algorithm based on prediction error significantly improves the accuracy of the independent time scale. The cesium fountain primary frequency standard is chosen as the frequency reference to predict the frequency drift of the optically pumped small cesium clock. The accuracy and long-term stability of the independent time scale calculated are much better than those when the time scale itself is used as the frequency reference. Taking the international standard time (UTCr) as the reference, the accuracy of the independent time scale is maintained within 15 ns. The frequency stability is 1.57 × 10–14 for a sampling interval of 1 day, 4.29 × 10–15 for a sampling interval of 15 days, and 2.87 × 10–15 for a sampling interval of 30 days is showing that its stability can meet the current national time demand.
  • 图 1  氢原子钟HM5085相对于铯基准钟测量频率偏差的Allan偏差曲线

    Fig. 1.  Allan deviation curves of the measurement frequency deviation of the hydrogen atom clock HM5085 relative to cesium atomic fountain clock.

    图 2  光抽运守时小铯钟的Allan偏差曲线

    Fig. 2.  The Allan deviation curves of optically pumped small cesium clocks.

    图 3  Cs3059的频率漂移估计

    Fig. 3.  Frequency drift estimation of Cs3059.

    图 4  Cs2025的频率漂移估计

    Fig. 4.  Frequency drift estimation of Cs2025.

    图 5  基于预测误差计算权重的时间尺度的相位偏差

    Fig. 5.  Phase deviation curve of the time scale with weights calculated based on the prediction error.

    图 6  基于预测误差计算权重的时间尺度与原子钟的Allan偏差曲线

    Fig. 6.  Allan deviation curve of the time scale based on the weight of prediction error and Allan deviation curves of atomic clocks.

    图 7  基于噪声特性计算权重的时间尺度的相位偏差

    Fig. 7.  Phase deviation curve of the time scale with weights based on the noise characteristics.

    图 8  两种不同取权算法的时间尺度的Allan偏差曲线

    Fig. 8.  Allan deviation curves of the time scale of two different weighting algorithms.

    图 9  基于不同参考预报频率漂移的时间尺度的相位偏差

    Fig. 9.  Phase deviation of the time scale based on different reference forecast frequency drifts.

    图 10  基于不同参考预报频率漂移的时间尺度的Allan 偏差曲线

    Fig. 10.  Allan deviation curves based on the time scale of different reference forecast frequency drifts.

    图 11  时间尺度相对于UTCr的相位偏差

    Fig. 11.  Phase deviation curve of the time scale relative to UTCr.

    图 12  时间尺度相对于UTCr的稳定度曲线

    Fig. 12.  Stability curve of the time scale relative to UTCr.

    图 13  时间尺度相对于UTCr的相位偏差

    Fig. 13.  Phase deviation curve of the time scale relative to UTCr.

    图 14  时间尺度相对于UTCr的稳定度曲线

    Fig. 14.  Stability curve of the time scale relative to UTCr.

    表 1  不同取权方法的时间尺度的准确度比较

    Table 1.  Comparison of time scale accuracy of different weighting methods.

    不同取权
    方法
    最大误差/ns最小误差/ns均值/ns标准偏差/ns
    预测误差
    取权
    9.44–12.25–0.174.22
    噪声特性
    取权
    8.43–18.22–6.125.51
    下载: 导出CSV

    表 2  不同取权方法的时间尺度的稳定度比较

    Table 2.  Comparison of time scale stability of different weighting methods.

    平均时间/d 1 5 10 20 30
    预测误差
    取权
    1.56×
    10–14
    8.11×
    10–15
    5.15×
    10–15
    3.24×
    10–15
    2.59×
    10–15
    噪声特性
    取权
    1.49×
    10–14
    7.13×
    10–15
    4.61×
    10–15
    2.94×
    10–15
    2.51×
    10–15
    下载: 导出CSV

    表 3  原子钟与时间尺度相对于UTCr的Allan偏差

    Table 3.  The Allan deviation of atomic clocks and time scale relative to UTCr.

    取样间隔/dCs3050Cs3059时间尺度
    13.80×10–143.39×10–141.57×10–14
    52.06×10–141.36×10–148.81×10–15
    101.23×10–141.30×10–144.91×10–15
    151.85×10–141.58×10–144.29×10–15
    30******2.87×10–15
    下载: 导出CSV
  • [1]

    Greenhall C A 2003 Metrologia 40 S335Google Scholar

    [2]

    Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49Google Scholar

    [3]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [4]

    Song H J, Dong S W, Zhang Y, Wang X, Guo D, An W, Qi Y, Zhang S G 2025 Phys. Scr. 100 015217Google Scholar

    [5]

    宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海 2024 物理学报 73 060201Google Scholar

    Song H J, Dong S W, Wang X, Jiang M, Zhang Y, Guo D, Zhang J H 2024 Acta Phys. Sin. 73 060201Google Scholar

    [6]

    Song H J, Dong S W, Qu L L, Wang X, Guo D 2021 J. Instrum. 16 P06032Google Scholar

    [7]

    宋会杰, 董绍武, 王翔, 章宇, 王燕平 2020 物理学报 69 170201Google Scholar

    Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69 170201Google Scholar

    [8]

    Song H J, Dong S W, Wu W J, Jiang M, Wang W X 2018 Metrologia 55 350Google Scholar

    [9]

    刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新 2023 物理学报 72 184202Google Scholar

    Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 184202Google Scholar

    [10]

    梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富 2023 物理学报 72 013702Google Scholar

    Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 013702Google Scholar

    [11]

    邵晓东, 韩海年, 魏志义 2021 物理学报 70 134204Google Scholar

    Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134204Google Scholar

    [12]

    He X, Yuan Z C, Chen J Y, Fang S W, Chen X Z, Wang Q, Qi X H 2022 Front. Phys. 10 970030Google Scholar

    [13]

    Shi H B, Qin X M, Chen H J, Yan Y F, Lu Z Q, Wang Z Y, Liu Z J, Guan X L, Wei Q, Shi T T, Chen J B 2025 Phys. Rev. Appl. 23 034018Google Scholar

    [14]

    Guo G K, Li C, Hou D, Liu K, Sun F Y, Zhang S G 2023 Appl. Sci. 13 9155Google Scholar

    [15]

    Domnin Y S, Baryshev V N, Boyko A I, Elkin G A, Novoselov A V, Kopylov L N, Kupalov D S 2013 Meas. Tech. 55 1155Google Scholar

    [16]

    Levi F, Calonico D, Calosso C E, Godone A, Micalizio S, Costanzo G A 2014 Metrologia 51 270Google Scholar

    [17]

    Shi J R, Wang X L, Yang F, Bai Y, Guan Y, Fan S C, Liu D D, Ruan J, Zhang S G 2023 Chin. Phys. B 32 040602Google Scholar

    [18]

    Wang X L, Ruan J, Liu D D, Guan Y, Shi J R, Yang F, Bai Y, Zhang H, Fan S C, Wu W J, Zhao S H, Zhang S G 2023 Metrologia 60 065012Google Scholar

    [19]

    Rovera G D, Bize S, Chupin B, Guéna J, Laurent P H, Rosenbusch P, Uhrich P, Abgrall M 2016 Metrologia 53 S81Google Scholar

    [20]

    Bauch A, Weyers S, Piester D, Staliuniene E, Yang W 2012 Metrologia 49 180Google Scholar

    [21]

    Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 065015Google Scholar

    [22]

    宋会杰, 董绍武, 王翔, 王燕平, 张继海, 屈俐俐, 赵书红, 张首刚 2022 时间频率学报 45 270

    Song H J, Dong S W, Wang X, Wang Y P, Zhang J H, Qu L L, Zhao S H, Zhang S G 2022 J. Time Freq. 45 270

    [23]

    Zucca C, Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289Google Scholar

    [24]

    Stein S R 1992 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting McLean, VA, December 1—3, 1992 p289

    [25]

    Coleman M J, Beard R L 2020 Navigation 67 333Google Scholar

    [26]

    Wang X B, Shi F F, Gong D L, Xu S Y, Li Z N, Fu G T, Li Q 2020 Metrologia 57 065009Google Scholar

    [27]

    Greenhall C A, 2001 33rd Annual precise time and time interval systems and applications meeting, Long Beach, CA, November 27—29, 2001 p445

    [28]

    Wu Y W, Liu S R 2023 Metrologia 60 065009Google Scholar

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法. 物理学报, doi: 10.7498/aps.73.20231866
    [2] 梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富. 氢原子钟双选态束光学系统仿真分析. 物理学报, doi: 10.7498/aps.72.20221363
    [3] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, doi: 10.7498/aps.70.20210372
    [4] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法. 物理学报, doi: 10.7498/aps.69.20191920
    [5] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, doi: 10.7498/aps.68.20191147
    [6] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, doi: 10.7498/aps.68.20182294
    [7] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, doi: 10.7498/aps.67.20172759
    [8] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, doi: 10.7498/aps.67.20181097
    [9] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源. 物理学报, doi: 10.7498/aps.67.20172733
    [10] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用. 物理学报, doi: 10.7498/aps.65.134204
    [11] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, doi: 10.7498/aps.65.128701
    [12] 尹毅, 张奕, 谭伯仲, 陈杰华, 顾思洪. 芯片原子钟相干布居囚禁谱线特性研究. 物理学报, doi: 10.7498/aps.64.034207
    [13] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法. 物理学报, doi: 10.7498/aps.64.080201
    [14] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法. 物理学报, doi: 10.7498/aps.63.228402
    [15] 杨卓琴, 张璇. 三个不同时间尺度的电耦合模型的组合簇放电. 物理学报, doi: 10.7498/aps.62.170508
    [16] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, doi: 10.7498/aps.61.219401
    [17] 支蓉, 龚志强, 郑志海, 周磊. 基于矩阵理论的全球温度资料的尺度性研究. 物理学报, doi: 10.7498/aps.58.2113
    [18] 林敏, 方利民. 双稳系统演化的时间尺度与随机共振的加强. 物理学报, doi: 10.7498/aps.58.2136
    [19] 李 勇, 毕勤胜. 连续搅拌槽式反应器中自催化化学反应的延迟同步. 物理学报, doi: 10.7498/aps.57.6099
    [20] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性. 物理学报, doi: 10.7498/aps.47.1436
计量
  • 文章访问数:  237
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-16
  • 修回日期:  2025-08-02
  • 上网日期:  2025-08-11

/

返回文章
返回