搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转双势阱中势垒参数对玻色-爱因斯坦凝聚体隐藏涡旋的影响

杨国全 靳晶晶

引用本文:
Citation:

旋转双势阱中势垒参数对玻色-爱因斯坦凝聚体隐藏涡旋的影响

杨国全, 靳晶晶

Influence of barrier parameters in rotating double-well potential on hidden vortices in Bose-Einstein condensate

YANG Guoquan, JIN Jingjing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 玻色-爱因斯坦凝聚体的涡旋研究是探索宏观量子现象的重要途径. 本文聚焦于旋转双势阱中势垒参数对隐藏涡旋形成和演化的影响, 旨在揭示势垒宽度和高度对涡旋动力学的调控机制. 通过数值求解带耗散的Gross-Pitaevskii方程, 分析了不同势垒宽度和高度下凝聚体的密度分布、相位分布、涡旋数量及平均角动量. 结果表明: 增大势垒宽度可以显著促进隐藏涡旋的生成, 且生成的可见涡旋和隐藏涡旋总数仍然满足费曼规则; 当势垒宽度较大时, 隐藏涡旋会沿势垒轴线呈现摆动分布, 反映隐藏涡旋间相互作用增强. 相比之下, 当势垒高度高于临界值(指能够将凝聚体完全分隔的势垒高度)时, 改变其值对生成涡旋数量影响很小; 当势垒高度低于临界值时, 隐藏涡旋核因势阱连通变得可见, 而且可见涡旋的生成阈值降低. 特别地, 在旋转谐振子势阱中临时引入中间势垒可有效引入相位奇点, 促进在较低旋转频率下生成稳定涡旋态, 优于纯谐振子势阱所需的频率. 本研究为实验调控涡旋提供了理论依据, 具有一定的学术价值和应用前景.
    Vortex dynamics in Bose-Einstein condensates (BECs) are crucial for understanding quantum coherence, superfluidity, and topological phenomena. In this work, we investigate the influence of barrier parameters in a rotating double-well potential on the formation and evolution of hidden vortices, aiming to reveal the regulatory mechanisms of barrier width and height on vortex dynamics. By numerically solving the dissipative Gross-Pitaevskii equation for a two-dimensional BEC system confined strongly along the z-axis, we analyze the density distribution, phase distribution, vortex number, and average angular momentum under varying barrier widths and heights. The results show that increasing barrier width significantly promote the formation of hidden vortices, with the total number of visible and hidden vortices still satisfying the Feynman rule. For larger barrier widths, hidden vortices exhibit an oscillatory distribution due to enhanced vortex interactions. In contrast, when the barrier height is above the critical threshold (i.e. the height sufficient to completely separate the condensate), the effect of the barrier height is limited , but below this critical threshold, the hidden vortex cores become visible, thereby reducing the threshold for vortex formation. A particularly striking finding is the efficacy of a temporary barrier strategy: by reducing $ {V_0} $ from $ 4\hbar {\omega _x} $ to $ 0 $ within a rotating double-well trap, stable vortex states with four visible vortices are generated at $ \varOmega = 0.5{\omega _x} $. Under the same parameter conditions, it is impossible to generate a stable state containing vortices at the same $ \varOmega $ by directly using the rotating harmonic trap. In other words, a temporary barrier within a rotating harmonic trap effectively introduces phase singularities, facilitating stable vortex states at lower rotation frequencies than those required in a purely harmonic trap. These findings demonstrate that precise tuning of barrier parameters can effectively control vortex states, providing theoretical guidance for experimentally observing hidden vortices and advancing the understanding of quantum vortex dynamics.
  • 图 1  不同势阱宽度$ \sigma $下, (a) $ {l_z} $与不同$ \varOmega $下生成的涡旋总数$ {N_{\text{t}}} $的关系, (b) $ {l_z} $与$ \varOmega $的关系, 以及(c) $ {N_{\text{h}}} $与$ \varOmega $的关系

    Fig. 1.  Relationships of (a) $ {l_z} $ versus $ {N_{\text{t}}} $ for different $ \varOmega $, (b) $ {l_z} $ versus $ \varOmega $, (c) $ {N_{\text{h}}} $ versus $ \varOmega $ for different barrier widths $ \sigma $.

    图 2  不同势垒宽度$ \sigma $下, 双势阱以$ \varOmega = 0.9{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)和波函数$ \psi $的相位分布(第2行)在$ t = 250\omega _x^{ - 1} $时的情形

    Fig. 2.  Density distribution $ {\left| \psi \right|^{2}} $ (the first row) and phase distribution of $ \psi $ (the second row) for different widths $ \sigma $ at $ t = 250\omega _x^{ - 1} $ after rotating the double-well potential with $ \varOmega = 0.9{\omega _x} $.

    图 3  $ \sigma = 2{d_0} $, 双势阱以$ \varOmega = 0.9{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)、波函数$ \psi $的相位分布(第2行), 以及$ {l_z} $随时间的演化(第3行)

    Fig. 3.  Density distribution $ {\left| \psi \right|^{2}} $ (the first row), phase distribution of $ \psi $ (the second row), and time evolution of $ {l_z} $(the third row) for $ \sigma = 2{d_0} $ after the double-well potential suddenly begins to rotate with $ \varOmega = 0.9{\omega _x} $.

    图 4  不同势阱高度$ {V_0} $下, (a) $ {l_z} $与不同$ \varOmega $下生成的涡旋总数$ {N_{\text{t}}} $的关系, (b) $ {l_z} $与$ \varOmega $的关系, (c) $ {N_{\text{h}}} $与$ \varOmega $的关系

    Fig. 4.  Relationships of (a) $ {l_z} $ versus $ {N_{\text{t}}} $ for different $ \varOmega $, (b) $ {l_z} $ versus $ \varOmega $, (c) $ {N_{\text{h}}} $ versus $ \varOmega $ for different barrier heights $ {V_0} $.

    图 5  当$ {V_0} \gt 25\hbar {\omega _x} $时, (a)凝聚体基态密度截面图$ {\left| {\psi (x, 0)} \right|^2} $和(b)势阱截面图$ V(x, 0) $

    Fig. 5.  (a) Cross-sectional plots $ {\left| {\psi (x, 0)} \right|^2} $ of the initial ground state density and (b) sectional view $ V(x, 0) $ of the potential well along the x-axis for $ {V_0} \gt 25\hbar {\omega _x} $.

    图 6  不同势垒高度$ {V_0} $下, 双势阱以$ \varOmega = 0.5{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)和波函数$ \psi $的相位分布(第2行)在$ t = 250\omega _x^{ - 1} $时的情形

    Fig. 6.  Density distribution $ {\left| \psi \right|^{2}} $ (first row) and phase distribution of $ \psi $ (second row) for different widths $ {V_0} $ at $ t = 250\omega _x^{ - 1} $ after rotating the double-well potential with $ \varOmega = 0.5{\omega _x} $.

    图 7  当$ {V_0} \lt 25\hbar {\omega _x} $时, (a)凝聚体基态密度截面图$ {\left| {\psi (x, 0)} \right|^2} $和(b)势阱截面图$ V(x, 0) $

    Fig. 7.  (a) Cross-sectional plots $ {\left| {\psi (x, 0)} \right|^2} $ of the initial ground state density and (b) sectional view $ V(x, 0) $ of the potential well along the x-axis for $ {V_0} \lt 25\hbar {\omega _x} $.

    图 8  双阱势以$ \varOmega = 0.5{\omega _x} $旋转后, 凝聚体密度分布$ {\left| \psi \right|^{2}} $和波函数$ \psi $相位分布的时间演化, 其中$ {V_0} = 20\hbar {\omega _x} $(第1, 2行), $ {V_0} = 4\hbar {\omega _x} $(第3, 4行)

    Fig. 8.  Time evolution of the density distribution $ {\left| \psi \right|^{2}} $ and phase distribution of $ \psi $ after the double-well potential suddenly begins to rotate with $ \varOmega = 0.5{\omega _x} $. Among them, $ {V_0} = 20\hbar {\omega _x} $ in the first and second rows, and $ {V_0} = 4\hbar {\omega _x} $ in the third and fourth rows.

  • [1]

    Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950Google Scholar

    [2]

    Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402Google Scholar

    [3]

    Hall B V, Whitlock S, Anderson R, Hannaford P, Sidorov A I 2007 Phys. Rev. Lett. 98 030402Google Scholar

    [4]

    Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G, Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401Google Scholar

    [5]

    Hofferberth S, Lesanovsky I, Fischer B, Verdu J, Schmiedmayer J 2006 Nat. Phys. 2 710Google Scholar

    [6]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman J B 2009 Phys. Rev. Lett. 102 130401Google Scholar

    [7]

    Spielman I B 2009 Phys. Rev. A 79 063613Google Scholar

    [8]

    Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806Google Scholar

    [9]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476Google Scholar

    [10]

    Haljan P C, Coddington I, Engels P, Cornell E A 2001 Phys. Rev. Lett. 87 210403Google Scholar

    [11]

    Hodby E, Hechenblaikner G, Hopkins S A, Marago O M, Foot C J 2001 Phys. Rev. Lett. 88 010405Google Scholar

    [12]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047Google Scholar

    [13]

    Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature 455 948Google Scholar

    [14]

    Fetter A L 2009 Rev. Mod. Phys. 81 647Google Scholar

    [15]

    Cooper N R 2008 Adv. Phys. 57 539Google Scholar

    [16]

    Dalfovo F, Giorgini S, Guilleumas M, Pitaevskii L, Stringari S 1997 Phys. Rev. A 56 3840Google Scholar

    [17]

    Stringari S 2001 Phys. Rev. Lett. 86 4725Google Scholar

    [18]

    Penckwitt A A, Ballagh R J, Gardiner C W 2002 Phys. Rev. Lett. 89 260402Google Scholar

    [19]

    Baym G, Pethick C J 2004 Phys. Rev. A 69 043619Google Scholar

    [20]

    Aftalion A, Blanc X, Dalibard J 2005 Phys. Rev. A 71 023611Google Scholar

    [21]

    Mizushima T, Machida K 2010 Phys. Rev. A 81 053605Google Scholar

    [22]

    Ostrovskaya E A, Kivshar Y S 2004 Phys. Rev. Lett. 93 160405Google Scholar

    [23]

    Piazza F, Collins L A, Smerzi A 2009 Phys. Rev. A 80 021601Google Scholar

    [24]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627Google Scholar

    [25]

    Wen L H, Luo X B 2012 Laser Phys. Lett. 9 618Google Scholar

    [26]

    Sabari S 2017 Phys. Lett. A 381 3062Google Scholar

    [27]

    Ishfaq A B, Bishwajyoti D 2024 Phys. Rev. E 110 024208Google Scholar

    [28]

    Wu B, Niu Q 2003 New J. Phys. 5 104Google Scholar

    [29]

    Liu M, Wen L H, Xiong H W, Zhan M S 2006 Phys. Rev. A 73 063620Google Scholar

    [30]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301Google Scholar

  • [1] 赵磊, 邱旭, 梁毅, 胡爱元, 文林. 旋转自旋-轨道角动量耦合玻色-爱因斯坦凝聚体的基态性质. 物理学报, doi: 10.7498/aps.74.20250542
    [2] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街. 物理学报, doi: 10.7498/aps.73.20232003
    [3] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, doi: 10.7498/aps.72.20222319
    [4] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性. 物理学报, doi: 10.7498/aps.72.20222195
    [5] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, doi: 10.7498/aps.72.20222306
    [6] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性. 物理学报, doi: 10.7498/aps.72.20230001
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, doi: 10.7498/aps.70.20210705
    [9] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, doi: 10.7498/aps.69.20191648
    [10] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, doi: 10.7498/aps.69.20200372
    [11] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备. 物理学报, doi: 10.7498/aps.66.083701
    [12] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学. 物理学报, doi: 10.7498/aps.66.160301
    [13] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, doi: 10.7498/aps.64.030302
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, doi: 10.7498/aps.62.026701
    [15] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为. 物理学报, doi: 10.7498/aps.62.110501
    [16] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, doi: 10.7498/aps.62.200306
    [17] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, doi: 10.7498/aps.59.3720
    [18] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, doi: 10.7498/aps.57.661
    [19] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响. 物理学报, doi: 10.7498/aps.56.1245
    [20] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, doi: 10.7498/aps.54.5003
计量
  • 文章访问数:  359
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-26
  • 修回日期:  2025-08-26
  • 上网日期:  2025-09-17

/

返回文章
返回