搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用范德瓦耳斯工程定制具有全新发光各向异性的二维异质结

文婷 苏子洛 王雅兰 蔡霜 巫佳琦 秦嘉泽 焦陈寅 王曾晖 张泽娟 裴胜海 夏娟

引用本文:
Citation:

利用范德瓦耳斯工程定制具有全新发光各向异性的二维异质结

文婷, 苏子洛, 王雅兰, 蔡霜, 巫佳琦, 秦嘉泽, 焦陈寅, 王曾晖, 张泽娟, 裴胜海, 夏娟

Customizing two-dimensional heterojunction with novel luminescenct anisotropy using van der Waals engineering

WEN Ting, SU Ziluo, WANG Yalan, CAI Shuang, WU Jiaqi, QIN Jiaze, JIAO Chenyin, WANG Zenghui, ZHANG Zejuan, PEI Shenghai, XIA Juan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 二维材料的发光特性与各向异性构成了微纳偏振发光器件实现与性能优化的物理基础. 然而, 并非所有天然二维材料体系同时具备强本征发光与强各向异性, 这在很大程度上限制了其在偏振可控发光器件中的应用潜力. 针对这一问题, 本研究基于范德瓦耳斯工程策略, 构建了由单层MoS2与低对称性NbIrTe4组成的异质结, 从而实现了高效发光特性与强各向异性响应的协同耦合. 角分辨偏振光致发光测试结果表明, NbIrTe4中固有的各向异性势场能够有效地改变单层MoS2的面内晶格对称性, 诱导其光致发光过程呈现明显的偏振依赖性, 并显著地提升激子的各向异性辐射强度. 本研究不仅揭示了范德瓦耳斯异质结中发光各向异性产生的微观物理机制, 还为新一代高性能偏振发光器件的结构设计与性能调控提供了可行的理论指导与实验依据.
    Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we utilize van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, which is composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS by using angle-resolved PL spectroscopy. The results indicate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful guidance for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
  • 图 1  实验装置示意图. 其激发光源为波长532 nm的线偏振激光, 通过旋转半波片调节激发光偏振方向, 实现角偏振PL测量. 激光束经100倍物镜聚焦于样品表面, 激发功率控制在0.1 mW以下, 以有效抑制光致加热效应. 插图为1L-MoS2与NbIrTe4薄片堆叠的异质结侧视图

    Fig. 1.  Schematic diagram of the experimental setup. A linearly polarized laser with a wavelength of 532 nm serves as the excitation source, and a rotating half-wave plate is used to control the polarization angle for angle-resolved polarization-dependent PL measurements. The laser beam is focused onto the sample surface using a 100× objective lens, and the excitation power keep below 0.1 mW to effectively suppress photoinduced heating effects. Inset: side view of the crystal structure of 1L-MoS2/NbIrTe4 heterostructure.

    图 2  样品的基本结构与光学表征 (a), (b) 分别为MoS2和NbIrTe4的晶体结构示意图; (c), (d) 分别展示了1L-MoS2与II类Weyl半金属NbIrTe4的能带结构示意图, 突出其典型的电子态特征; (e) 1L-MoS2/NbIrTe4异质结的光学照片, 我们采用机械剥离法分别制备1L-MoS2和NbIrTe4薄片, 并通过干法转移技术依次将NbIrTe4与1L-MoS2转移至Si/SiO2基底, 堆叠形成1L-MoS2/NbIrTe4异质结(Heterostructure, HS). 随后, 异质结构样品被放置于120 ℃的真空环境中退火6 h, 以增强界面接触与稳定性. 其中, 蓝色虚线标示1L-MoS2区域, 红色点划线标示NbIrTe4区域, 紫色实线标示异质结区域, 比例尺为5 μm; (f) 1L-MoS2, 异质结和纯NbIrTe4的PL光谱, 橙色与绿色包络曲线分别对应激子峰XA与XB

    Fig. 2.  Structural and optical characterization of the samples. (a), (b) Crystal structures of MoS2 and NbIrTe4, respectively. (c), (d) Schematic band structures of monolayer MoS2 and the type-II Weyl semimetal NbIrTe4, highlighting their representative electronic features. (e) Optical image of the 1L-MoS2/NbIrTe4 heterostructure (HS). 1L-MoS2 and NbIrTe4 flakes are prepared separately via mechanical exfoliation. A dry-transfer technique is then used to sequentially transfer NbIrTe4 and 1L-MoS2 onto a Si/SiO2 substrate, forming a stacked 1L-MoS2/NbIrTe4 HS. The HS sample is subsequently annealed in a vacuum environment at 120 ℃ for 6 h to enhance interfacial contact and structural stability. The white dashed outline indicates the region of monolayer MoS2, the red dotted outline marks the NbIrTe4 region, and the purple solid line outline indicates the region of heterostructure. Scale bar: 5 μm. (f) PL spectra of monolayer MoS2, the 1L-MoS2/NbIrTe4 heterostructure and NbIrTe4. the orange and green shaded areas correspond to the exciton XA and XB, respectively.

    图 3  1L-MoS2与1L-MoS2/NbIrTe4异质结的角偏振PL光谱特性 (a) 1L-MoS2在线性激发光平行(0°)和垂直(90°)于b轴时的PL光谱; (b) 1L-MoS2中激子峰XA(橙色)与XB(绿色)的PL强度随偏振角变化的极坐标图, 圆点为实验测量值, 实线为拟合曲线; (c) 1L-MoS2/NbIrTe4异质结在激发光偏振方向平行(0°)和垂直于(270°)b轴时的PL光谱; (d) 异质结中激子峰XA与XB的PL强度角度依赖关系, 对应的极坐标图展示了其光学各向异性行为

    Fig. 3.  Angle-resolved polarized PL spectra of monolayer MoS2 and 1L-MoS2/NbIrTe4 heterostructure: (a) The PL spectra of 1L-MoS2 with the linear excitation light is parallel and perpendicular to the b axis; (b) polar plots of the PL intensity of exciton XA (purple) and XB (green) in monolayer MoS2, where the dots represent experimental data and the solid lines correspond to fitted curves; (c) the PL spectra of the 1L-MoS2/NbIrTe4 heterostructure with the linear excitation light is parallel and perpendicular to the b axis; (d) polar plots showing the angular dependence of PL intensity for excitons XA and XB in the heterostructure, indicating pronounced optical anisotropy.

    图 4  (a) 1L-MoS2的面内晶格结构示意图及其面内晶格投影出的布里渊区; (b) 1L-MoS2/NbIrTe4异质结的层间耦合作用打破MoS2晶格结构面内对称性及其晶格结构投影出的布里渊区示意图

    Fig. 4.  (a) In-plane lattice of monolayer MoS2 and corresponding Brillouin zone projected from in-plane lattice of monolayer MoS2; (b) schematic diagram of the interlayer coupling regulation mechanism of 1L-MoS2/NbIrTe4 heterostructure and corresponding Brillouin zone projected from anisotropy MoS2.

  • [1]

    Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photonics Insights 2 R03Google Scholar

    [2]

    Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028Google Scholar

    [3]

    Qiu H, Yu Z, Zhao T, et al. 2024 Sci. China Inform. Sci. 67 160400Google Scholar

    [4]

    Xu B, Zhu J K , Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Chen Y, Ren Z M, Wei X Y, Huang W, Xia J, Wang Z H 2023 Small 19 2300631

    [5]

    Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516Google Scholar

    [6]

    张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702Google Scholar

    Zhang M D, Jiao C Y, Wen T, Li J, Pei S H, Wang Z H, Xia J 2022 Acta. Phys. Sin. 71 140702Google Scholar

    [7]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [8]

    Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92Google Scholar

    [9]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68Google Scholar

    [10]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar

    [11]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [12]

    Gao W, Kahn A 2002 Org. Electron. 3 53Google Scholar

    [13]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar

    [14]

    Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971Google Scholar

    [15]

    Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988Google Scholar

    [16]

    Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503Google Scholar

    [17]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211Google Scholar

    [18]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417Google Scholar

    [19]

    Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498Google Scholar

    [20]

    Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749Google Scholar

    [21]

    Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772Google Scholar

    [22]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486Google Scholar

    [23]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171Google Scholar

    [24]

    Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604Google Scholar

    [25]

    Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876Google Scholar

    [26]

    Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104Google Scholar

    [27]

    Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983Google Scholar

    [28]

    Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053Google Scholar

    [29]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201Google Scholar

    [30]

    Yazyev O V, Kis A 2015 Mater. Today. 18 20Google Scholar

    [31]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [32]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [33]

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005Google Scholar

    [34]

    Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434Google Scholar

    [35]

    Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128Google Scholar

    [36]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [37]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [38]

    He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931Google Scholar

    [39]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486Google Scholar

    [40]

    Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323Google Scholar

    [41]

    Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318Google Scholar

    [42]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [43]

    Shaw J A 1999 Appl. Opt. 38 3157Google Scholar

    [44]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203Google Scholar

    [45]

    Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658Google Scholar

    [46]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101Google Scholar

    [47]

    Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, doi: 10.7498/aps.73.20231759
    [2] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, doi: 10.7498/aps.73.20241138
    [3] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, doi: 10.7498/aps.72.20222250
    [4] 顾梓恒, 臧强, 郑改革. 外尔半金属调制的范德瓦耳斯声子极化激元色散性质. 物理学报, doi: 10.7498/aps.72.20230167
    [5] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, doi: 10.7498/aps.72.20230191
    [6] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, doi: 10.7498/aps.72.20230318
    [7] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220544
    [8] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, doi: 10.7498/aps.71.20220371
    [9] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, doi: 10.7498/aps.71.20220132
    [10] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, doi: 10.7498/aps.70.20201904
    [11] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20201246
    [12] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, doi: 10.7498/aps.66.217302
    [13] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, doi: 10.7498/aps.64.106101
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, doi: 10.7498/aps.57.1246
    [15] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, doi: 10.7498/aps.57.6213
    [16] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, doi: 10.7498/aps.57.5476
    [17] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, doi: 10.7498/aps.57.7729
    [18] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, doi: 10.7498/aps.56.1911
    [19] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, doi: 10.7498/aps.56.1443
    [20] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, doi: 10.7498/aps.55.1055
计量
  • 文章访问数:  373
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-19
  • 修回日期:  2025-09-11
  • 上网日期:  2025-09-30

/

返回文章
返回