搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离子体电化学法的碳量子点制备、改性及其光学性能调控研究进展

邵徽武 高硕 王若愚 马雨彭雪 张卿 钟晓霞

引用本文:
Citation:

基于等离子体电化学法的碳量子点制备、改性及其光学性能调控研究进展

邵徽武, 高硕, 王若愚, 马雨彭雪, 张卿, 钟晓霞

Research progress of preparation, modification, and optical performance regulation of carbon quantum dots based on plasma electrochemistry method

SHAO Huiwu, GAO Shuo, WANG Ruoyu, MA Yupengxue, ZHANG Qing, ZHONG Xiaoxia
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 碳量子点作为一种新兴的零维碳基纳米材料, 因其优异的光电特性、良好的生物相容性和易于功能化等特性, 在生物医学、传感检测和LED照明等领域展现出巨大的应用潜力. 传统的水热、微波等合成方法通常面临反应条件苛刻、耗时长、能耗高且产物光学性能调控困难等问题. 等离子体电化学法, 通过等离子体与液体作用过程中产生高密度活性电子、离子及活性产物等与碳源分子进行反应, 可高效驱动碳量子点快速合成及改性. 等离子体电化学法具备温和的多反应参数可调的特性, 为碳量子点的合成和改性提供了全新的研究思路. 本文首先阐述了等离子体电化学法合成碳量子点的生长机理, 介绍该方法可通过调控多维参数实现对产物性能调控的独特优势. 随后介绍了基于等离子体的反应参数对碳量子点荧光量子产率和波长的调控的研究进展. 最后, 本文展示了基于等离子体制备和改性的碳量子点在生物医学、光电器件以及pH传感等领域的应用进展及其展望.
    Carbon quantum dots, as an emerging zero-dimensional carbon-based nanomaterial, have shown great potential applications in fields such as biomedicine, sensing detection, and LED lighting due to their excellent photoelectric properties, good biocompatibility, and ease of functionalization. Traditional synthesis methods like hydrothermal and microwave approaches often face challenges such as harsh reaction conditions, long reaction times, high energy consumption, and difficulties in controlling the optical properties of the products. The plasma electrochemistry method, which utilizes reactions between carbon source molecules and high-density active electrons, ions, and reactive species generated during the interaction of plasma with liquid, can efficiently drive the rapid synthesis and modification of carbon quantum dots. This method possesses the advantage of tunable multiple reaction parameters under mild conditions, providing a novel research method for synthesizing and modifying carbon quantum dots. This article first elucidates the growth mechanism of carbon quantum dots synthesized via plasma electrochemical methods and highlights the unique advantages of this approach in controlling product properties by regulating multidimensional parameters. Then, it reviews research progress of the regulation of the fluorescence quantum yield and wavelength of carbon quantum dots based on the adjustment of plasma reaction parameters. Finally, this article presents the application progress and prospects of plasma-prepared and plasma-modified carbon quantum dots in biomedicine, optoelectronic devices, pH sensing, and other fields.
  • 图 1  等离子体与水接触放电时产生的重要活性物种示意图, 经许可转载[19]

    Fig. 1.  Schematic diagram of some of the most important species generated during plasma discharge in contact with water, reproduced with permission, Copyright 2020, American Chemical Society[19].

    图 2  不同浓度DAMO对碳量子点的(a)荧光量子产率和(b)荧光光谱的影响; (c) 加入NaOH前后碳量子点样品的傅里叶变换红外光谱, 经许可转载[30]

    Fig. 2.  (a) Modulation of quantum yield and (b) photoluminescence emission spectra with different concentrations of DAMO; (c) Fourier transform infrared spectrum of carbon quantum dots samples before and after adding NaOH. Reproduced with permission, Copyright 2023, IOP Publishing Ltd[30].

    图 3  (a), (b) 等离子体处理30 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图; (c), (d) 等离子体处理60 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图, 经许可转载[32]

    Fig. 3.  (a), (b) Photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 30 minutes of plasma treatment; (c), (d) photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 60 minutes of plasma treatment. Reproduced with permission, Copyright 2022, Wiley-VCH GmbH[32].

    图 4  等离子体处理碳量子点的90 min在线测量的(a)荧光量子产率和(b)荧光光谱; 反应时间为15 min, 60 min和90 min制备的碳量子点的(c)拉曼光谱和(d)傅里叶变换红外光谱, 经许可转载[34]

    Fig. 4.  (a) Fluorescence quantum yield and (b) fluorescence spectra of online measurement for 90 min of plasma-treated carbon quantum dots; (c) Raman spectra and (d) Fourier transform infrared spectra of carbon quantum dots synthesized by plasma treatment for 15, 60 and 90 min. Reproduced with permission, Copyright 2024, Wiley-VCH GmbH[34].

    图 5  IR806碳点样品在氧气等离子体中处理不同时间的比较 (a)—(c) 三维荧光光谱; (d) 紫外–可见吸收光谱; (e) 傅里叶变换红外光谱; (f) 氢核磁共振光谱(g)—(i) 等离子体处理碳点2, 5和9 min的高分辨O 1s光电子能谱, 经许可转载[36]

    Fig. 5.  Comparison between IR806-CDs samples treated with O2 plasma: (a)–(c) Three-dimensional fluorescence spectra; (d) UV–vis absorption spectra; (e) FTIR spectra; (f) H NMR spectra; (g)–(i) high-resolution O 1s XPS spectra of IR806-CDs treated with O2 plasma for 0, 2, 5, and 9 min. Reproduced with permission, Copyright 2024, American Chemical Society[36].

    图 6  前驱物分别为(a), (b)一水合柠檬酸和L-赖氨酸(c), (d) 苋菜红(e), (f) 邻苯二胺时制备的碳量子点的紫外-可见光吸收光谱和三维荧光光谱

    Fig. 6.  The UV-Vis absorption spectra and three-dimensional fluorescence spectra of carbon quantum dots prepared with precursors (a), (b) citric acid monohydrate and L-lysine; (c), (d) amaranth; (e), (f) o-phenylenediamine, respectively.

    图 7  (a)—(c) 碳量子点浓度分别为10 g/L和10 mg/L的三维荧光光谱和吸收光谱;(d) 不同浓度碳量子点的荧光光谱, 经许可转载[37]

    Fig. 7.  (a)–(c) Three-dimensional fluorescence spectra and absorption spectra of carbon quantum dots at concentrations of 10 g/L and 10 mg/L, respectively; (d) fluorescence spectra of carbon quantum dots at different concentrations. Reproduced with permission, Copyright 2021, Wiley-VCH GmbH[37].

    图 8  基于等离子体的碳量子点制备、叶酸受体靶向和光动力治疗作用示意图, 经许可转载[39]

    Fig. 8.  Schematic diagram of the plasma-based preparation of carbon quantum dots, their folate receptor targeting, and photodynamic therapeutic effect. Reproduced with permission, Copyright 2023, Wiley-VCH GmbH[39].

    图 9  蓝色荧光碳点的制备及其在高显色指数白色LED中的应用, 经许可转载[40]

    Fig. 9.  Illustration of synthesizing blue fluorescent CDs with their application toward white LEDs with high color rendering index. Reproduced with permission, Copyright 2013, Springer Nature[40].

    图 10  Au@GQD作为光电探测器的光吸收层以及在光照下的动态光响应, 经许可转载[41]

    Fig. 10.  Au@GQD as the photoabsorber in a photodetector and its dynamic photoresponse under illumination. Reproduced with permission, Copyright 2020, American Chemical Society[41].

    图 11  利用微等离子体合成技术, 通过调控表面功能化, 实现基于生物质壳聚糖的氮掺杂石墨烯量子点的合理设计, 用于快速、灵敏且宽范围的pH传感示意图, 经许可转载[42]

    Fig. 11.  Illustration of rational design of chitosan biomass-derived NGQDs with tuned surface functionalizations using microplasma synthesis for rapid, sensitive, and wide-range pH sensing. Reproduced with permission, Copyright 2022, American Chemical Society[42]

  • [1]

    Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A 2004 J. Am. Chem. Soc. 126 12736Google Scholar

    [2]

    Liu M L, Chen B B, Li C M, Huang C Z 2019 Green Chem. 21 449Google Scholar

    [3]

    Ghosal K, Ghosh A 2019 Mater. Sci. Eng. C 96 887Google Scholar

    [4]

    Li Y S, Zhong X X, Rider A E, Furman S A, Ostrikov K 2014 Green Chem. 16 2566Google Scholar

    [5]

    John B K, Mathew B 2023 Opt. Mater. 139 113819Google Scholar

    [6]

    Li N X, Lei F, Xu D D, Li Y, Liu J L, Shi Y 2021 Opt. Mater. 111 110618Google Scholar

    [7]

    Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H 2016 Nano Today 11 565Google Scholar

    [8]

    Choi S H 2017 J. Phys. D: Appl. Phys. 50 103002Google Scholar

    [9]

    马雨彭雪, 王若愚, 秦晓茹, 张卿, 陈强, 钟晓霞 2023 力学学报 55 2938

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Chen Q, Zhong X X 2023 Chin. J. Theor. Appl. Mech. 55 2938

    [10]

    Wang Y F, Hu A G 2014 J. Mater. Chem. C 2 6921Google Scholar

    [11]

    Pho Q H, Escriba-Gelonch M, Losic D, Rebrov E V, Tran N N, Hessel V 2021 ACS Sustainable Chem. Eng. 9 4755Google Scholar

    [12]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Petrovic Z L, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, Von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002Google Scholar

    [13]

    Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809Google Scholar

    [14]

    Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2019 Chem. Eng. Process. - Process Intensif. 140 29Google Scholar

    [15]

    Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2020 Chem. Eng. Sci. 220 115648Google Scholar

    [16]

    Huang X, Li Y, Zhong X, Rider A E, Ostrikov K 2015 Plasma Processes Polym. 12 59Google Scholar

    [17]

    Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N 2019 Materials 12 2751Google Scholar

    [18]

    Chiang W, Mariotti D, Sankaran R M, Eden J G, Ostrikov K 2020 Adv. Mater. 32 1905508Google Scholar

    [19]

    Delgado H E, Elg D T, Bartels D M, Rumbach P, Go D B 2020 Langmuir 36 1156Google Scholar

    [20]

    Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2015 Spectrochim. Acta, Part B 6 7248

    [21]

    Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2021 Spectrochim. Acta, Part B 186 106307Google Scholar

    [22]

    Lee S, Kang H, Kim M, Yun G 2025 Plasma Processes Polym. 22 70005Google Scholar

    [23]

    Yang J S, Pai D Z, Chiang W H 2019 Carbon 153 315

    [24]

    Lim S Y, Shen W, Gao Z 2015 Chem. Soc. Rev. 44 362Google Scholar

    [25]

    Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620Google Scholar

    [26]

    Adhikari B C, Lamichhane P, Lim J S, Nguyen L N, Choi E H 2021 Results Phys. 30 104863Google Scholar

    [27]

    Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001Google Scholar

    [28]

    Adhikari E R, Samara V, Ptasinska S 2019 Biol. Chem. 400 93

    [29]

    Zhang Y, Wang Y L, Feng X T, Zhang F, Yang Y Z, Liu X G 2016 Appl. Surf. Sci. 387 1236Google Scholar

    [30]

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2023 J. Phys. D: Appl. Phys. 56 475202Google Scholar

    [31]

    Kim K, Chokradjaroen C, Saito N 2020 Nano Ex. 1 020043Google Scholar

    [32]

    Mohammadzaheri M, Siahpoush V, Asgari A 2022 Plasma Processes Polym. 19 2200089Google Scholar

    [33]

    Zhang Y Q, Liu X Y, Fan Y, Guo X Y, Zhou L, Lv Y, Lin J 2016 Nanoscale 8 15281Google Scholar

    [34]

    Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 22 2400168

    [35]

    Park S Y, Lee C Y, An H R, Kim H, Lee Y C, Park E C, Chun H S, Yang H Y, Choi S H, Kim H S, Kang K S, Park H G, Kim J P, Choi Y, Lee J, Lee H U 2017 Nanoscale 9 9210Google Scholar

    [36]

    Zhang Q, Wang F Q, Liu J L, Wang R Y, Ma Y P, Xia F F, Qiu Y Y, Zeng L W, Xu S F, Zhong X X 2024 Nano Lett. 24 13819Google Scholar

    [37]

    Weerasinghe J, Scott J, Deshan A D K, Chen D, Singh A, Sen S, Sonar P, Vasilev K, Li Q, Ostrikov K 2022 Adv. Mater. Technol. 7 2100586Google Scholar

    [38]

    Zhou Z J, Song J B, Nie L M, Chen X Y 2016 Chem. Soc. Rev. 45 6597Google Scholar

    [39]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Processes Polym. 21 2300174Google Scholar

    [40]

    Li C X, Yu C, Wang C F, Chen S 2013 J. Mater. Sci. 48 6307Google Scholar

    [41]

    Thakur M K, Fang C Y, Yang Y T, Effendi T A, Roy P K, Chen R S, Ostrikov K K, Chiang W H, Chattopadhyay S 2020 ACS Appl. Mater. Interfaces 12 28550Google Scholar

    [42]

    Kurniawan D, Anjali B A, Setiawan O, Ostrikov K K, Chung Y G, Chiang W H 2022 ACS Appl. Mater. Interfaces 14 1670Google Scholar

  • [1] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, doi: 10.7498/aps.70.20210908
    [2] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, doi: 10.7498/aps.70.20210455
    [3] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, doi: 10.7498/aps.68.20191121
    [4] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究. 物理学报, doi: 10.7498/aps.68.20181797
    [5] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 应力对锂离子电池中空碳包覆硅负极电化学性能的影响. 物理学报, doi: 10.7498/aps.68.20182279
    [6] 易有根, 王瑜英, 胡奇峰, 张彦彬, 彭勇宜, 雷红文, 彭丽萍, 王雪敏, 吴卫东. ZnCdO/ZnO单量子阱结构及其荧光发射特性. 物理学报, doi: 10.7498/aps.65.057802
    [7] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率. 物理学报, doi: 10.7498/aps.64.235201
    [8] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性. 物理学报, doi: 10.7498/aps.64.247803
    [9] 何志聪, 李芳, 李牧野, 魏来. CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究. 物理学报, doi: 10.7498/aps.64.046802
    [10] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 界面电子转移对量子点荧光闪烁行为的影响. 物理学报, doi: 10.7498/aps.63.167302
    [11] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究. 物理学报, doi: 10.7498/aps.63.027801
    [12] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, doi: 10.7498/aps.61.075212
    [13] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应. 物理学报, doi: 10.7498/aps.60.117803
    [14] 李桂琴. 硼-碳和硼-氮量子点器件的输运特性研究. 物理学报, doi: 10.7498/aps.59.4985
    [15] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响. 物理学报, doi: 10.7498/aps.58.66
    [16] 陈定安, 沈 里, 张家雨, 崔一平. 胶体CdSe量子点的色度学特性研究. 物理学报, doi: 10.7498/aps.56.6340
    [17] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, doi: 10.7498/aps.54.3935
    [18] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, doi: 10.7498/aps.50.1264
    [19] 司俊杰, 杨沁清, 滕 达, 王红杰, 余金中, 王启明, 郭丽伟, 周均铭. (113)面硅衬底上自组织生长的GeSi量子点及其光荧光. 物理学报, doi: 10.7498/aps.48.1745
    [20] 张仿清, 张亚非, 杨映虎, 李敬起, 陈光华, 蒋翔六. 直流弧光放电化学气相沉积(CVD)法制备金刚石薄膜及其等离子体的光发射谱原位测量. 物理学报, doi: 10.7498/aps.39.1965
计量
  • 文章访问数:  178
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 修回日期:  2025-09-22
  • 上网日期:  2025-09-25

/

返回文章
返回