-
碳量子点作为一种新兴的零维碳基纳米材料, 因其优异的光电特性、良好的生物相容性和易于功能化等特性, 在生物医学、传感检测和LED照明等领域展现出巨大的应用潜力. 传统的水热、微波等合成方法通常面临反应条件苛刻、耗时长、能耗高且产物光学性能调控困难等问题. 等离子体电化学法, 通过等离子体与液体作用过程中产生高密度活性电子、离子及活性产物等与碳源分子进行反应, 可高效驱动碳量子点快速合成及改性. 等离子体电化学法具备温和的多反应参数可调的特性, 为碳量子点的合成和改性提供了全新的研究思路. 本文首先阐述了等离子体电化学法合成碳量子点的生长机理, 介绍该方法可通过调控多维参数实现对产物性能调控的独特优势. 随后介绍了基于等离子体的反应参数对碳量子点荧光量子产率和波长的调控的研究进展. 最后, 本文展示了基于等离子体制备和改性的碳量子点在生物医学、光电器件以及pH传感等领域的应用进展及其展望.Carbon quantum dots, as an emerging zero-dimensional carbon-based nanomaterial, have shown great potential applications in fields such as biomedicine, sensing detection, and LED lighting due to their excellent photoelectric properties, good biocompatibility, and ease of functionalization. Traditional synthesis methods like hydrothermal and microwave approaches often face challenges such as harsh reaction conditions, long reaction times, high energy consumption, and difficulties in controlling the optical properties of the products. The plasma electrochemistry method, which utilizes reactions between carbon source molecules and high-density active electrons, ions, and reactive species generated during the interaction of plasma with liquid, can efficiently drive the rapid synthesis and modification of carbon quantum dots. This method possesses the advantage of tunable multiple reaction parameters under mild conditions, providing a novel research method for synthesizing and modifying carbon quantum dots. This article first elucidates the growth mechanism of carbon quantum dots synthesized via plasma electrochemical methods and highlights the unique advantages of this approach in controlling product properties by regulating multidimensional parameters. Then, it reviews research progress of the regulation of the fluorescence quantum yield and wavelength of carbon quantum dots based on the adjustment of plasma reaction parameters. Finally, this article presents the application progress and prospects of plasma-prepared and plasma-modified carbon quantum dots in biomedicine, optoelectronic devices, pH sensing, and other fields.
-
Keywords:
- plasma electrochemistry /
- carbon quantum dots /
- fluorescence quantum yield /
- fluorescence emission wavelength
-
图 2 不同浓度DAMO对碳量子点的(a)荧光量子产率和(b)荧光光谱的影响; (c) 加入NaOH前后碳量子点样品的傅里叶变换红外光谱, 经许可转载[30]
Fig. 2. (a) Modulation of quantum yield and (b) photoluminescence emission spectra with different concentrations of DAMO; (c) Fourier transform infrared spectrum of carbon quantum dots samples before and after adding NaOH. Reproduced with permission, Copyright 2023, IOP Publishing Ltd[30].
图 3 (a), (b) 等离子体处理30 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图; (c), (d) 等离子体处理60 min制备的氮掺杂碳量子点的光致发光光谱和二维激发-发射等高线图, 经许可转载[32]
Fig. 3. (a), (b) Photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 30 minutes of plasma treatment; (c), (d) photoluminescence spectra and two-dimensional (2D) excitation-emission contour maps of N-doped carbon quantum dots prepared by 60 minutes of plasma treatment. Reproduced with permission, Copyright 2022, Wiley-VCH GmbH[32].
图 4 等离子体处理碳量子点的90 min在线测量的(a)荧光量子产率和(b)荧光光谱; 反应时间为15 min, 60 min和90 min制备的碳量子点的(c)拉曼光谱和(d)傅里叶变换红外光谱, 经许可转载[34]
Fig. 4. (a) Fluorescence quantum yield and (b) fluorescence spectra of online measurement for 90 min of plasma-treated carbon quantum dots; (c) Raman spectra and (d) Fourier transform infrared spectra of carbon quantum dots synthesized by plasma treatment for 15, 60 and 90 min. Reproduced with permission, Copyright 2024, Wiley-VCH GmbH[34].
图 5 IR806碳点样品在氧气等离子体中处理不同时间的比较 (a)—(c) 三维荧光光谱; (d) 紫外–可见吸收光谱; (e) 傅里叶变换红外光谱; (f) 氢核磁共振光谱(g)—(i) 等离子体处理碳点2, 5和9 min的高分辨O 1s光电子能谱, 经许可转载[36]
Fig. 5. Comparison between IR806-CDs samples treated with O2 plasma: (a)–(c) Three-dimensional fluorescence spectra; (d) UV–vis absorption spectra; (e) FTIR spectra; (f) H NMR spectra; (g)–(i) high-resolution O 1s XPS spectra of IR806-CDs treated with O2 plasma for 0, 2, 5, and 9 min. Reproduced with permission, Copyright 2024, American Chemical Society[36].
图 6 前驱物分别为(a), (b)一水合柠檬酸和L-赖氨酸(c), (d) 苋菜红(e), (f) 邻苯二胺时制备的碳量子点的紫外-可见光吸收光谱和三维荧光光谱
Fig. 6. The UV-Vis absorption spectra and three-dimensional fluorescence spectra of carbon quantum dots prepared with precursors (a), (b) citric acid monohydrate and L-lysine; (c), (d) amaranth; (e), (f) o-phenylenediamine, respectively.
图 7 (a)—(c) 碳量子点浓度分别为10 g/L和10 mg/L的三维荧光光谱和吸收光谱;(d) 不同浓度碳量子点的荧光光谱, 经许可转载[37]
Fig. 7. (a)–(c) Three-dimensional fluorescence spectra and absorption spectra of carbon quantum dots at concentrations of 10 g/L and 10 mg/L, respectively; (d) fluorescence spectra of carbon quantum dots at different concentrations. Reproduced with permission, Copyright 2021, Wiley-VCH GmbH[37].
图 11 利用微等离子体合成技术, 通过调控表面功能化, 实现基于生物质壳聚糖的氮掺杂石墨烯量子点的合理设计, 用于快速、灵敏且宽范围的pH传感示意图, 经许可转载[42]
Fig. 11. Illustration of rational design of chitosan biomass-derived NGQDs with tuned surface functionalizations using microplasma synthesis for rapid, sensitive, and wide-range pH sensing. Reproduced with permission, Copyright 2022, American Chemical Society[42]
-
[1] Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A 2004 J. Am. Chem. Soc. 126 12736
Google Scholar
[2] Liu M L, Chen B B, Li C M, Huang C Z 2019 Green Chem. 21 449
Google Scholar
[3] Ghosal K, Ghosh A 2019 Mater. Sci. Eng. C 96 887
Google Scholar
[4] Li Y S, Zhong X X, Rider A E, Furman S A, Ostrikov K 2014 Green Chem. 16 2566
Google Scholar
[5] John B K, Mathew B 2023 Opt. Mater. 139 113819
Google Scholar
[6] Li N X, Lei F, Xu D D, Li Y, Liu J L, Shi Y 2021 Opt. Mater. 111 110618
Google Scholar
[7] Yuan F L, Li S H, Fan Z T, Meng X Y, Fan L Z, Yang S H 2016 Nano Today 11 565
Google Scholar
[8] Choi S H 2017 J. Phys. D: Appl. Phys. 50 103002
Google Scholar
[9] 马雨彭雪, 王若愚, 秦晓茹, 张卿, 陈强, 钟晓霞 2023 力学学报 55 2938
Ma Y P X, Wang R Y, Qin X R, Zhang Q, Chen Q, Zhong X X 2023 Chin. J. Theor. Appl. Mech. 55 2938
[10] Wang Y F, Hu A G 2014 J. Mater. Chem. C 2 6921
Google Scholar
[11] Pho Q H, Escriba-Gelonch M, Losic D, Rebrov E V, Tran N N, Hessel V 2021 ACS Sustainable Chem. Eng. 9 4755
Google Scholar
[12] Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Fernandez Rivas D, Foster J E, Garrick S C, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts E C, Pawlat J, Petrovic Z L, Pflieger R, Reuter S, Schram D C, Schröter S, Shiraiwa M, Tarabová B, Tsai P A, Verlet J R R, Von Woedtke T, Wilson K R, Yasui K, Zvereva G 2016 Plasma Sources Sci. Technol. 25 053002
Google Scholar
[13] Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809
Google Scholar
[14] Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2019 Chem. Eng. Process. - Process Intensif. 140 29
Google Scholar
[15] Ma X, Li S, Hessel V, Lin L, Meskers S, Gallucci F 2020 Chem. Eng. Sci. 220 115648
Google Scholar
[16] Huang X, Li Y, Zhong X, Rider A E, Ostrikov K 2015 Plasma Processes Polym. 12 59
Google Scholar
[17] Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N 2019 Materials 12 2751
Google Scholar
[18] Chiang W, Mariotti D, Sankaran R M, Eden J G, Ostrikov K 2020 Adv. Mater. 32 1905508
Google Scholar
[19] Delgado H E, Elg D T, Bartels D M, Rumbach P, Go D B 2020 Langmuir 36 1156
Google Scholar
[20] Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2015 Spectrochim. Acta, Part B 6 7248
[21] Elg D T, Delgado H E, Martin D C, Sankaran R M, Rumbach P, Bartels D M, Go D B 2021 Spectrochim. Acta, Part B 186 106307
Google Scholar
[22] Lee S, Kang H, Kim M, Yun G 2025 Plasma Processes Polym. 22 70005
Google Scholar
[23] Yang J S, Pai D Z, Chiang W H 2019 Carbon 153 315
[24] Lim S Y, Shen W, Gao Z 2015 Chem. Soc. Rev. 44 362
Google Scholar
[25] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P 2015 Small 11 1620
Google Scholar
[26] Adhikari B C, Lamichhane P, Lim J S, Nguyen L N, Choi E H 2021 Results Phys. 30 104863
Google Scholar
[27] Mariotti D, Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001
Google Scholar
[28] Adhikari E R, Samara V, Ptasinska S 2019 Biol. Chem. 400 93
[29] Zhang Y, Wang Y L, Feng X T, Zhang F, Yang Y Z, Liu X G 2016 Appl. Surf. Sci. 387 1236
Google Scholar
[30] Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2023 J. Phys. D: Appl. Phys. 56 475202
Google Scholar
[31] Kim K, Chokradjaroen C, Saito N 2020 Nano Ex. 1 020043
Google Scholar
[32] Mohammadzaheri M, Siahpoush V, Asgari A 2022 Plasma Processes Polym. 19 2200089
Google Scholar
[33] Zhang Y Q, Liu X Y, Fan Y, Guo X Y, Zhou L, Lv Y, Lin J 2016 Nanoscale 8 15281
Google Scholar
[34] Ma Y P X, Wang R Y, Qin X R, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 22 2400168
[35] Park S Y, Lee C Y, An H R, Kim H, Lee Y C, Park E C, Chun H S, Yang H Y, Choi S H, Kim H S, Kang K S, Park H G, Kim J P, Choi Y, Lee J, Lee H U 2017 Nanoscale 9 9210
Google Scholar
[36] Zhang Q, Wang F Q, Liu J L, Wang R Y, Ma Y P, Xia F F, Qiu Y Y, Zeng L W, Xu S F, Zhong X X 2024 Nano Lett. 24 13819
Google Scholar
[37] Weerasinghe J, Scott J, Deshan A D K, Chen D, Singh A, Sen S, Sonar P, Vasilev K, Li Q, Ostrikov K 2022 Adv. Mater. Technol. 7 2100586
Google Scholar
[38] Zhou Z J, Song J B, Nie L M, Chen X Y 2016 Chem. Soc. Rev. 45 6597
Google Scholar
[39] Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Processes Polym. 21 2300174
Google Scholar
[40] Li C X, Yu C, Wang C F, Chen S 2013 J. Mater. Sci. 48 6307
Google Scholar
[41] Thakur M K, Fang C Y, Yang Y T, Effendi T A, Roy P K, Chen R S, Ostrikov K K, Chiang W H, Chattopadhyay S 2020 ACS Appl. Mater. Interfaces 12 28550
Google Scholar
[42] Kurniawan D, Anjali B A, Setiawan O, Ostrikov K K, Chung Y G, Chiang W H 2022 ACS Appl. Mater. Interfaces 14 1670
Google Scholar
计量
- 文章访问数: 178
- PDF下载量: 9
- 被引次数: 0