搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空虚拟阴极测量的绝对误差分析

海军 李建泉 张智娟 王行行

引用本文:
Citation:

真空虚拟阴极测量的绝对误差分析

海军, 李建泉, 张智娟, 王行行
cstr: 32037.14.aps.74.20251188

Absolute error analysis of vacuum virtual cathode measurement

HAI Jun, LI Jianquan, ZHANG Zhijuan, WANG Hanghang
cstr: 32037.14.aps.74.20251188
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于已有的一维虚拟阴极理论模型, 本研究进一步建立了虚拟阴极的绝对误差理论, 并系统分析了热阴极温度、饱和电子发射电流、电子收集电流、杜什曼常数以及电子逸出功等参数对虚拟阴极测量的误差贡献. 研究结果表明, 影响虚拟阴极势阱深度测量的主要因素与虚拟阴极的强弱密切相关, 当热阴极产生的虚拟阴极较强时, 阴极加热温度的不确定性约有61%的概率成为势阱深度测量的主要误差源, 而当虚拟阴极较弱时, 电子电流测量的不确定性约有39%的概率成为主要误差源. 此外, 在虚拟阴极的空间宽度测量方面, 对于常见的热阴极材料, 其测量结果的主要误差大概率(至少90%)是由热阴极温度和电子逸出功的不确定性造成的, 只有当虚拟阴极非常微弱时, 电子电流的不确定性是主要误差源.
    The virtual cathode is an important phenomenon in thermionic emission, and it is widely present in various electronic devices and systems such as vacuum tubes, electron guns, high-power microscopes, X-ray tubes, concentrated solar thermionic converters, and emissive probes. Since the virtual cathode can directly affect the performance of these devices, it is of great significance to study the characteristics of the virtual cathode and conduct experimental measurements on it. In our recent research, a one-dimensional model of thermionic emission was established, and the analytical expressions for the potential barrier and the spatial width of the virtual cathode were derived. With the development of virtual cathode theories, measuring the virtual cathode experimentally has become a reality. In this study, based on our one-dimensional theoretical model, the absolute error theory of the virtual cathode is established, and the contributions of different parameters, such as the hot-cathode temperature, the saturated electron emission current, the electron collection current, Dushman constant, and the work function of hot cathodes, to the absolute errors in the virtual cathode measurement are systematically analyzed. The research results show that the main factors affecting the measurement of the virtual cathode potential are closely related to the size of the virtual cathode. When the virtual cathode potential generated by hot-cathodes is strong, the uncertainty of the hot-cathode temperature becomes the main error source, with a probability of about 61% for the potential barrier measurement, but when the virtual cathode is weak, the main factor becomes the uncertainty of the electron current measurement with a probability of about 39%. Besides, when measuring the virtual cathode width, for common hot-cathodes such as oxide (BaO) cathode, tungsten cathode, and molybdenum cathode, the main factors affecting the measurement results are the uncertainties in the hot-cathode temperature and the work function. These uncertainties account for approximately 94%, 96% and 97% of the measurement variability, corresponding to the above three cathodes, respectively. Only when the virtual cathode is very weak, does the uncertainty of the electron current become the main error source for the measurement of the virtual cathode width.
      通信作者: 李建泉, liHjianquan@163.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2024MS116)、平顶山学院博士科研启动基金(批准号: PXY-BSQD-2024025)和河南省科技攻关项目(批准号: 252102230127)资助的课题.
      Corresponding author: LI Jianquan, liHjianquan@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2024MS116), the Doctoral Scientific Research Staring Foundation of Pingdingshan University, China (Grant No. PXY-BSQD-2024025), and the Key Science and Technology Program of Henan Province, China (Grant No. 252102230127).
    [1]

    Kurkin S A, Koronovski A A, Hramov A E 2009 Plasma Phys. Rep. 35 628Google Scholar

    [2]

    Kurkin S A, Hramov A E 2009 Tech. Phys. Lett. 35 23Google Scholar

    [3]

    Kurilenkov Y K, Tarakanov V P, Gus'kov S Y, Oginov A V, Karpukhin V T 2018 Contrib. Plasma Phys. 58 952Google Scholar

    [4]

    Nebel R A, Stange S, Park J, Taccetti J M, Murali S K, Garcia C E 2005 Phys. Plasmas 12 012701Google Scholar

    [5]

    Mahto M, Jain P K 2018 IEEE Trans. Plasma Sci. 46 518Google Scholar

    [6]

    Kostov K G, Nikolov N A, Spassovsky I P, Spassov V A 1992 Appl. Phys. Lett. 60 2598Google Scholar

    [7]

    Kostov K G, Nikolov N A 1994 Phys. Plasmas 1 1034Google Scholar

    [8]

    Valletti L, Fantauzzi S, Paolo F D 2023 IEEE Trans. Electron Devices 70 3864Google Scholar

    [9]

    Li L M, Cheng G X, Zhang L, Ji X, Chang L, Xu Q F, Liu L, Wen J C, Li C L, Wan H 2011 J. Appl. Phys. 109 074504Google Scholar

    [10]

    苏东, 邓立科, 王斌 2014 物理学报 63 235204Google Scholar

    Su D, Deng L K, Wang B 2014 Acta Phys. Sin. 63 235204Google Scholar

    [11]

    王道泳, 马锦绣, 李毅人, 张文贵 2009 物理学报 58 8432Google Scholar

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432Google Scholar

    [12]

    Smith J R, Hershkowitz N, Coakley P 1979 Rev. Sci. Instrum. 50 210Google Scholar

    [13]

    Marek A, Jílek M, Picková I, Kudrna P, Tichý M, Schrittwieser R, Ionita C 2008 Contrib. Plasma Phys. 48 491Google Scholar

    [14]

    Ye M Y, Takamura S 2000 Phys. Plasmas 7 3457Google Scholar

    [15]

    Seif M N, Zhou Q F, Liu X T, Balk T J, Beck M J 2022 IEEE Trans. Electron Devices 69 3523Google Scholar

    [16]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [17]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [18]

    Langmuir I 1923 Phys. Rev. 21 419Google Scholar

    [19]

    Langmuir I, Compton K T 1931 Rev. Mod. Phys. 3 191Google Scholar

    [20]

    Li J Q, Li S H, Ma H J 2024 Phys. Scr. 99 055974Google Scholar

    [21]

    Li J Q, Li S H 2024 J. Appl. Phys. 136 105105Google Scholar

    [22]

    Li J Q, Xie X Y, Li S H, Zhang Q H 2022 Vacuum 200 111013Google Scholar

    [23]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [24]

    Kalinin Y A, Hramov A E 2006 Tech. Phys. 51 558Google Scholar

    [25]

    李建泉 2024 发射探针: 原理、装置及应用(天津: 天津大学出版社) 第157—176页

    Li J Q 2024 Emissive Probes: Principles, Devices and Applications (Tianjin: Tianjin University Press) pp157–176

    [26]

    Zhang J F 2006 IEEE Trans. Reliab. 55 169Google Scholar

    [27]

    Purwar H, Goutierre E, Guler H, et al. 2023 J. Phys. Commun. 7 025002Google Scholar

    [28]

    Bekker T B, Rashchenko S V, Seryotkin Y V, Kokh A E, Davydov A V, Fedorov P P 2017 J. Am. Ceram. Soc. 101 450Google Scholar

  • 图 1  虚拟阴极电势绝对误差的系数函数值分布

    Fig. 1.  Distribution of coefficient function values of the absolute error of the virtual cathode potential.

    图 2  钨阴极产生的虚拟阴极宽度的绝对误差系数函数值分布

    Fig. 2.  Distribution of coefficient function values of the absolute error of the virtual cathode width generated by the tungsten cathode.

    图 3  在钨阴极的工作温度范围内, 交点$ {Q_2} $和$ {Q_3} $附近的系数函数值分布

    Fig. 3.  Within the operating temperature range of the tungsten cathode, the distribution of coefficient function values near points $ {Q_2} $ and $ {Q_3} $.

    图 4  交点$ {Q_2} $和$ {Q_3} $的位置随N值的变化

    Fig. 4.  Positional relationship of $ {Q_2} $ and $ {Q_3} $ with respect to the N values.

    表 1  钨阴极产生的虚拟阴极宽度的主要影响因素与Y值之间的关系

    Table 1.  Relation between the main influencing factors of the virtual cathode width generated by the tungsten cathode and Y values.

    Y值大小 函数值大小 主要因素
    0 < Y < Q3 $ {f_2} \approx {f_5} > {f_3} > {f_4} $ T 和 $ {\phi _{\rm work}} $
    Q3 < Y < Q2 $ {f_2} > {f_3} > {f_5} > {f_4} $ T
    Q2 < Y < 1 $ {f_3} > {f_2} \approx {f_5} > {f_4} $ $ {I_{\text{E}}} $和$ {I_{\text{C}}} $
    下载: 导出CSV

    表 2  几种常见热阴极材料的N值以及交点$ {Q_2} $和$ {Q_3} $位置的计算结果

    Table 2.  Calculation results of the N values of several common thermionic cathode materials, as well as the positions of $ {Q_2} $ and $ {Q_3} $.

    阴极材料 $ {\phi _{{\text{work}}}} $/eV T/K $ N = \dfrac{{{\phi _{{\text{work}}}}}}{{kT}} $ $ {Y_{{Q_3}}} $ $ {Y_{{Q_2}}} $
    BaO 1.65 1200—2200 8.7—16.0 0.9384—0.9676 0.9420—0.9686
    W 4.56 1800—3650 14.5—29.4 0.9641—0.9827 0.9653—0.9830
    Mo 4.24 1700—2890 17.0—28.9 0.9696—0.9823 0.9705—0.9827
    下载: 导出CSV
  • [1]

    Kurkin S A, Koronovski A A, Hramov A E 2009 Plasma Phys. Rep. 35 628Google Scholar

    [2]

    Kurkin S A, Hramov A E 2009 Tech. Phys. Lett. 35 23Google Scholar

    [3]

    Kurilenkov Y K, Tarakanov V P, Gus'kov S Y, Oginov A V, Karpukhin V T 2018 Contrib. Plasma Phys. 58 952Google Scholar

    [4]

    Nebel R A, Stange S, Park J, Taccetti J M, Murali S K, Garcia C E 2005 Phys. Plasmas 12 012701Google Scholar

    [5]

    Mahto M, Jain P K 2018 IEEE Trans. Plasma Sci. 46 518Google Scholar

    [6]

    Kostov K G, Nikolov N A, Spassovsky I P, Spassov V A 1992 Appl. Phys. Lett. 60 2598Google Scholar

    [7]

    Kostov K G, Nikolov N A 1994 Phys. Plasmas 1 1034Google Scholar

    [8]

    Valletti L, Fantauzzi S, Paolo F D 2023 IEEE Trans. Electron Devices 70 3864Google Scholar

    [9]

    Li L M, Cheng G X, Zhang L, Ji X, Chang L, Xu Q F, Liu L, Wen J C, Li C L, Wan H 2011 J. Appl. Phys. 109 074504Google Scholar

    [10]

    苏东, 邓立科, 王斌 2014 物理学报 63 235204Google Scholar

    Su D, Deng L K, Wang B 2014 Acta Phys. Sin. 63 235204Google Scholar

    [11]

    王道泳, 马锦绣, 李毅人, 张文贵 2009 物理学报 58 8432Google Scholar

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432Google Scholar

    [12]

    Smith J R, Hershkowitz N, Coakley P 1979 Rev. Sci. Instrum. 50 210Google Scholar

    [13]

    Marek A, Jílek M, Picková I, Kudrna P, Tichý M, Schrittwieser R, Ionita C 2008 Contrib. Plasma Phys. 48 491Google Scholar

    [14]

    Ye M Y, Takamura S 2000 Phys. Plasmas 7 3457Google Scholar

    [15]

    Seif M N, Zhou Q F, Liu X T, Balk T J, Beck M J 2022 IEEE Trans. Electron Devices 69 3523Google Scholar

    [16]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [17]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [18]

    Langmuir I 1923 Phys. Rev. 21 419Google Scholar

    [19]

    Langmuir I, Compton K T 1931 Rev. Mod. Phys. 3 191Google Scholar

    [20]

    Li J Q, Li S H, Ma H J 2024 Phys. Scr. 99 055974Google Scholar

    [21]

    Li J Q, Li S H 2024 J. Appl. Phys. 136 105105Google Scholar

    [22]

    Li J Q, Xie X Y, Li S H, Zhang Q H 2022 Vacuum 200 111013Google Scholar

    [23]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [24]

    Kalinin Y A, Hramov A E 2006 Tech. Phys. 51 558Google Scholar

    [25]

    李建泉 2024 发射探针: 原理、装置及应用(天津: 天津大学出版社) 第157—176页

    Li J Q 2024 Emissive Probes: Principles, Devices and Applications (Tianjin: Tianjin University Press) pp157–176

    [26]

    Zhang J F 2006 IEEE Trans. Reliab. 55 169Google Scholar

    [27]

    Purwar H, Goutierre E, Guler H, et al. 2023 J. Phys. Commun. 7 025002Google Scholar

    [28]

    Bekker T B, Rashchenko S V, Seryotkin Y V, Kokh A E, Davydov A V, Fedorov P P 2017 J. Am. Ceram. Soc. 101 450Google Scholar

  • [1] 李涵汐, 王德真. 热电子发射对钨偏滤器靶板附近磁化鞘层影响的模拟研究. 物理学报, 2023, 72(15): 159401. doi: 10.7498/aps.72.20230276
    [2] 尚吉花, 杨新宇, 孙大鹏, 张久兴. 钡钨阴极优化与热电子发射性能. 物理学报, 2022, 71(4): 047901. doi: 10.7498/aps.71.20211684
    [3] 尚吉花, 杨新宇, 孙大鹏, 张久兴(Jiu-Xing Zhang). 钡钨阴极优化与热电子发射性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211684
    [4] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [5] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [6] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [7] 刘洪亮, 张忻, 王杨, 肖怡新, 张久兴. 单晶LaB6阴极材料典型晶面的电子结构和发射性能研究. 物理学报, 2018, 67(4): 048101. doi: 10.7498/aps.67.20172187
    [8] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [9] 王秋萍, 冯玉军, 徐卓, 成鹏飞, 凤飞龙. 铌镁酸铅-钛酸铅铁电阴极电子发射特性. 物理学报, 2015, 64(24): 247701. doi: 10.7498/aps.64.247701
    [10] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究. 物理学报, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [11] 包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴. 放电等离子烧结原位合成LaxCe1-xB6化合物及性能研究. 物理学报, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [12] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [13] 杨锦辉, 宋君强. 混沌系统模型误差平均绝对误差增长过程研究. 物理学报, 2012, 61(22): 220510. doi: 10.7498/aps.61.220510
    [14] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [15] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [16] 余建华, 赖建军, 黄建军, 王新兵, 丘军林. 槽型空心阴极放电中槽底阴极面的电子发射对放电的影响. 物理学报, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [17] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型. 物理学报, 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
    [18] 张恩虬. 关于热电子发射理论的评述(Ⅰ)——对氧化物阴极的半导体模型的批判. 物理学报, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
    [19] 关于“热阴极电离真空计的线性理论”一文读者来函讨论的摘要. 物理学报, 1965, 21(3): 689-690. doi: 10.7498/aps.21.689
    [20] 华中一. 热阴极电离真空计的线性理论. 物理学报, 1963, 19(2): 73-82. doi: 10.7498/aps.19.73
计量
  • 文章访问数:  523
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-09-19
  • 上网日期:  2025-09-26

/

返回文章
返回