搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He+离子与H2O分子碰撞的单电荷转移截面

张煜 朱亚衍 祁月盈 屈一至 于皖东

引用本文:
Citation:

He+离子与H2O分子碰撞的单电荷转移截面

张煜, 朱亚衍, 祁月盈, 屈一至, 于皖东

Single Charge Transfer Cross Sections of He+–H2O Collisions

ZHANG Yu, ZHU Yayan, QI Yueying, QU Yi-Zhi, YU Wandong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 太阳风中的He离子与H2O分子碰撞的电荷转移截面是天体等离子体建模等领域所需的重要数据。然而,当前对应太阳风速度范围的中低能区He+离子与H2O分子碰撞的单电荷转移截面实验测量数据有限,基于第一性原理的理论计算尚未开展。本工作利用含时密度泛函非绝热耦合分子动力学模型,计算了1.33–1800 keV宽能量范围内He+离子与H2O分子碰撞的单电荷转移截面。模拟采用反转碰撞框架,探究了电荷转移和电子离子耦合动力学,发现H2O分子的单电荷转移截面有较强的分子取向依赖特性,并且低能区和高能区不同分子取向对截面的贡献有显著区别。截面计算结果与已有的实验以及经典理论模型数据较为符合,表明本文所用理论方法和数值框架不仅适用于处理非裸核离子和分子碰撞的电荷转移过程,还能定量分析分子取向对截面的影响。这为后续复杂碰撞体系的相关截面计算奠定了基础。本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00193中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/en/s/zqABV3)。
    The charge transfer cross sections of collisions between He ions in the solar wind and H2O molecule constitute essential data required for the astrophysical plasma modeling. However, experimental measurements of single charge transfer (SCT) cross sections for low-to-intermediate energy (corresponding to the velocity range of the solar wind) He+–H2O collisions are extremely scarce, and first-priciple theoretical calculations remain unperformed. In this study, employing the time-dependent density functional theory nonadiabatically coupling with the molecular dynamics, the SCT cross sections are calculated for He+–H2O collisions over an broad energy range of 1.33–1800 keV. The simulations utilize an inverse collision framework to investigate the charge transfer dynamics and electron-ion coupling processes. It is found that the SCT cross section exhibits a strong dependence on the molecular orientation. Furthermore, the contributions of different molecular orientations to the cross section differ significantly between the low-energy and high-energy regions. The computed cross section results show good agreement with the existing data obtained by experiments and classical theoretical models. This indicates that the present theoretical method and numerical framework are not only applicable to handling the charge transfer processes in collisions between dressed ions and molecules but also enable the quantitative analysis of the effect of molecular orientation on the cross section. This study lays a foundation for cross section calculations of complex collision systems. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00193 (Please use the private access link https://www.scidb.cn/en/s/zqABV3 to access the dataset during the peer review process).
  • [1]

    Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo López-Urrutia J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, Stöhlker T 2019 J. Phys. B 52171003

    [2]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31093401

    [3]

    Wu Y-J, Meng T-M, Zhang X-W, Tan X, Ma P-F, Yin H, Ren B-H, Tu B-S, Zhang R-T, Xiao J, Ma X-W, Zou Y-M, Wei B-R 2024 Acta Phys. Sin. 73240701(in Chinese) [吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁2024物理学报73240701]

    [4]

    Niu J, Zhang W, Qi Y, Gao J 2025 Acta Phys. Sin. 74153402(in Chinese) [牛佳洁, 张唯唯, 祁月盈, 高俊文2025物理学报74153402]

    [5]

    Lin X, Lin M, Wang K, Wu Y, Ren Y, Wang Y, Li J 2025 Acta Phys. Sin. 74152501(in Chinese) [林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维2025物 理学报74152501]

    [6]

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55250008(in Chinese) [魏宝仁, 张瑞田2025中国科学: 物理学力学天文学55250008]

    [7]

    Wedlund C S, Bodewits D, Alho M, Hoekstra R, Behar E, Gronoff G, Gunell H, Nilsson H, Kallio E, Beth A 2019 Astron. Astrophys. 630 A35

    [8]

    Fuselier S A, Shelley E G, Goldstein B E, Goldstein R, Neugebauer M, Ip W-H, Balsiger H, Rème H 1991 Astrophys. J. 379734

    [9]

    Greenwood J B, Chutjian A, Smith S J 2000 Astrophys. J. 529605

    [10]

    Koopman, D. W. 1968, Phys. Rev. 16657

    [11]

    Rudd M E, Itoh A, Goffe T V 1985 Phys. Rev. A 322499

    [12]

    Rudd M E, Goffe T V, Itoh A, DuBois R D 1985 Phys. Rev. A 32829

    [13]

    Sataka M, Yagishita A, Y Nakai 1990 J. Phys. B 231225

    [14]

    Bragg W H, Kleeman R 1905 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 10318

    [15]

    Garcia P M Y, Sigaud G M, Luna H, Santos A C F, Montenegro E C, Shah M B 2008 Phys. Rev. A 77052708

    [16]

    Murakami M, Kirchner T, Horbatsch M 2012 Phys. Rev. A 86022719

    [17]

    Jana D, Purkait K, Halder, Purkait M 2021 Eur. Phys. J. D 75245

    [18]

    Zhang Y W, Gao J W, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102022814

    [19]

    Wang F, Hong X, Wang J, Kim K S 2011 J. Chem. Phys. 134154308

    [20]

    Yu W, Gao C-Z, Sato S A, Castro A, Rubio A, Wei B 2021 Phys. Rev. A 103032816

    [21]

    Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93062706

    [22]

    Yu W, Gao C-Z, ZhangY, Zhang F S, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97032706

    [23]

    Qin S, Gao C-Z, Yu W, Qu Y-Z 2021 Chin. Phys. Lett. 38063101

    [24]

    Zhang H-H, Yu W-D, Gao C-Z, Qu Y-Z 2023 Chin. Phys. Lett. 40043101

    [25]

    Tancogne-Dejean N, Oliveira M J, Andrade X, Appel Heiko, Borca C H, Breton G L, Buchholz F, Castro A, Corni S, Correa A A, Giovannini U D, Delgado A, Eich F G, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen A H, Lebedeva I V, Lüders M, Marques M A L, Ohlmann S T, Pipolo S, Rampp M, Rozzi C A, Strubbe D A, Sato S A, Schäfer C, Theophilou I, Welden A, Rubio A 2020 J. Chem. Phys. 152124119

    [26]

    Vignale G 1995 Phys. Rev. Lett. 743233

    [27]

    Gómez Pueyo A, Marques M A, Rubio A, Castro A 2018 J. Chem. Theory Comput. 143040

    [28]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 541703

    [29]

    Perdew J P, Zunger A 1981 Phys. Rev. B 235048

    [30]

    Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, Pichl L 2003 Phys. Rev. A 68012716

  • [1] 戴硕, 李振, 张超, 郁菁, 赵晓菲, 吴阳, 满宝元. 竖直取向MoS2纳米片复合Ag基底的表面增强拉曼光谱效应及机制. 物理学报, doi: 10.7498/aps.74.20241671
    [2] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性. 物理学报, doi: 10.7498/aps.74.20241522
    [3] 牛佳洁, 张唯唯, 祁月盈, 高俊文. 高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究. 物理学报, doi: 10.7498/aps.74.20250541
    [4] 林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维. 低能区N3+离子与He原子碰撞电荷转移截面研究. 物理学报, doi: 10.7498/aps.74.20250581
    [5] 朱宇豪, 袁翔, 吴勇, 王建国. 质子碰撞硼原子非辐射的电荷转移过程. 物理学报, doi: 10.7498/aps.72.20230470
    [6] 刘晓军, 杨雪. 基于激发态分子内质子转移过程的HBT-OMe分子检测HClO的荧光增强机理. 物理学报, doi: 10.7498/aps.72.20222313
    [7] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, doi: 10.7498/aps.70.20210670
    [8] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, doi: 10.7498/aps.68.20190276
    [9] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, doi: 10.7498/aps.67.20172220
    [10] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [11] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, doi: 10.7498/aps.64.087102
    [12] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, doi: 10.7498/aps.64.147303
    [13] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究. 物理学报, doi: 10.7498/aps.62.107102
    [14] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, doi: 10.7498/aps.62.103103
    [15] 赵益清, 刘玲, 刘春雷, 薛平, 王建国. 氢离子与里德伯原子碰撞中的电荷转移过程. 物理学报, doi: 10.7498/aps.58.3248
    [16] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, doi: 10.7498/aps.55.723
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, doi: 10.7498/aps.54.2859
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回