搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳辐射/对流区域边界处的碳、氮、氧元素的电子碰撞电离研究

侯永 罗青波 梁欣 曾交龙 袁建民

引用本文:
Citation:

太阳辐射/对流区域边界处的碳、氮、氧元素的电子碰撞电离研究

侯永, 罗青波, 梁欣, 曾交龙, 袁建民

The study of electron impact ionization of C, N, and O at the solar radiation/convection zone boundary

HOU Yong, LUO Qingbo, LIANG Xin, ZENG Jiaolong, YUAN Jianmin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 太阳辐射层与对流层边界区域($ T\thicksim180$ eV, $ n_e\thicksim9\times10^{22}\;{\rm{cm}}^{-3}$)是太阳内部能量传输方式从辐射主导向对流主导转变的关键界面, 也是研究高温稠密等离子体物理的天然实验室. 这一区域的物理特性决定了恒星演化模型的可靠性与能量传输机制的稳定性, 特别是高温稠密等离子体中强烈的碰撞电离会改变电子数密度分布, 进而影响能量的输运过程. 本文发展了一种耦合等离子体环境效应来计算原子结构的新方法: 通过将计算原子结构的Flexible Atomic Code(FAC)与超网链(Hypernetted-chain, HNC)近似相结合, 在原子波函数计算中引入电子-电子、电子-离子关联函数来考虑等离子体中屏蔽效应, 系统研究了极端条件下电子碰撞电离的物理机制. 基于扭曲波近似的计算表明, 考虑等离子体环境效应时, 碳、氮和氧元素的电子碰撞电离截面较自由原子模型显著增强, 同时电离阈值出现明显下降的现象. 研究发现这种增强效应主要源于离子间强耦合导致的原子势场重叠和自由电子屏蔽引起的束缚态能级移动. 本研究直接将离子结构引入电子结构计算的哈密顿量中, 所获得的电离参数可直接用于改进太阳内部辐射输运模型, 为惯性约束聚变等极端条件等离子体研究提供理论支持.
    The boundary region between the solar radiation zone and the convection zone ($ T\thicksim180$ eV, $ n_e\thicksim $$ 9\times10^{22}\;{\rm{cm}}^{-3}$) is a critical interface where energy transport in the solar interior transitions from radiation-dominated to convection-dominated regimes. This region also serves as a natural laboratory for studying hot dense plasma. The physical properties of this zone are essential for the reliability of stellar evolution models and the stability of energy transport mechanisms. One of major unresolved issue is how electron collision ionization affects the density of free electrons and radiation properties in this plasma, while accurately describing the impact of hot-dense environments on electron impact ionization (EII) (such as electron screening, ion correlation). To fill this gap, we systematically calculate EII cross sections for C, N, and O ions under realistic solar boundary conditions, with a focus on hot-dense environment impacts. We develop a novel computational framework that merges?hot-dense environment effects into atomic structure calculations: the Flexible Atomic Code (FAC) for atomic structure is combined with the Hyper-netted-Chain (HNC) approximation to capture electron-electron, electron-ion and ion-ion correlations, enabling self-consistent treatment of electron screening and ion correlation. Atomic wave functions are derived by solving the Dirac equation within the ion-sphere model, using a modified central potential that incorporates both free-electron screening and ion–ion interactions. EII cross sections are then computed via the Distorted-Wave (DW) approximation in FAC. The results demonstrate that hot-dense environment effects significantly enhance the electron-impact ionization cross sections of C, N, and O compared to those calculated under the free-atom model. Additionally, a notable reduction in the ionization threshold energy is observed. These effects are attributed to the overlap of atomic potentials due to strong ion coupling and the shift in bound-state energy levels caused by free-electron screening. For instance, under solar boundary conditions, the ionization cross section of C+ increased by up to 50%, with the ionization threshold decreasing from about 24 eV (isolated) to 18 eV (with screening). Similar enhancements were observed for nitrogen and oxygen ions across various charge states. By providing updated ionization cross sections for C, N, and O ions under realistic solar interior conditions, this work offers essential parameters for improving radiation transport models, ionization balance calculations, and equation-of-state models in stellar interiors. The results underscore the necessity of including hot-dense environment effects in atomic process calculations for hot dense plasmas, with implications for astrophysics and inertial confinement fusion research.
  • 图 1  孤立情况下, 类铍离子电子碰撞电离截面随着入射电子能量变化的关系. (a) C2+的结果; (b) N3+的结果; (c) O4+的结果. 带有误差的黑色正方形是Fogle等人[5]实验测量的结果, 红色实线和绿色点线是Fogle等人分别采用组态平均扭曲波(CADW) 近似[56]与赝态R-matrix(RMPS) 近似[57]计算的理论结果, 蓝色虚线、橙色点-虚线和紫色点-点-虚线是本文分别采用DW近似、CBE近似和BED近似理论计算的结果

    Fig. 1.  The electron impact ionization cross section of beryllium-like ions as a function of incident electron energy for the isolation ion. (a) The case of C2+; (b) The case of N3+; (c) The case of O4+. The black squares with error bars[5] represent the experimental measurements by Fogle et al. The red solid and green dotted lines represent the theoretical results calculated by Fogle et al. by using the CADW approximation[56] and the RMPS[57] approximation, respectively. The blue dashed, orange dotted-dashed, and violet dotted-dotted-dashed lines represent the theoretical results calculated in this paper using the DW, CBE, and BED approximation, respectively.

    图 2  热稠密等离子体中C2+的$ 1 s^22 s^2\; ^{1}S_{0} $组态$ 2 s $束缚电子径向波函数. (a) 在温度为100 eV时, 径向波函数随等离子体密度的变化. 黑色实线为孤立情况下计算的结果; 蓝色点-虚线、绿色虚线、红色点线是T为100 eV, $ n_e $分别为$ 3\times10^{22} $ cm–3、$ 6\times10^{22} $ cm–3、$ 15\times10^{22} $ cm–3情况下计算的结果; (b) 在相同密度$ n_e $为$ 9\times10^{22} $ cm–3下, 径向波函数随等离子体温度的变化. 黑色实线为孤立情况下的计算结果; 青色点线、蓝色点-虚线、棕色点-点-虚线是T分别为50 eV、100 eV和180 eV情况下计算的结果.

    Fig. 2.  The radial wave function of the $ 2 s $ bound electron in the $ 1 s^22 s^2\; ^{1}S_{0} $ configuration of C2+ in hot dense plasmas. (a) The black solid line represents the result calculated for the isolated case. The blue dotted-dashed, green dashed, and red dotted lines represent the results calculated for $ T = 100 eV $ and $ n_e $ values of $ 3\times10^{22} $ cm–3, $ 6\times10^{22} $ cm–3, and $ 15\times10^{22} $ cm–3, respectively; (b) The black solid line represents the result calculated for the isolated case. The cyan dotted, blue dotted-dashed, and brown dotted-dotted-dashed lines represent the results calculated for $ n_e = 9\times10^{22} $ cm–3 and T values of 50 eV, 100 eV, and 180 eV, respectively.

    图 3  随着入射电子能量变化的C2+的$ 1 s^22 s^2\; ^{1}S_{0}\; \rightarrow 1 s^22 s^1 $的电子碰撞电离截面. (a) 温度T为100 eV、不同电子密度的碰撞电离截面计算结果. 黑色实线为孤立情况下计算的结果; 绿色点线、紫色点-点-虚线、红色虚线是电子密度$ n_e $分别为$ 3\times10^{22} $ cm–3、$ 6\times10^{22} $ cm–3、$ 15\times10^{22} $ cm–3情况下计算的结果. (b) 电子密度$ n_e $为$ 9\times10^{22} $ cm–3、不同温度的碰撞电离截面计算结果. 黑色实线为孤立情况下的计算结果; 橙色点-虚线、绿色点线、蓝色虚线是温度T分别为50 eV、100 eV和180 eV情况下计算的结果

    Fig. 3.  The electron impact ionization cross section of $ 1 s^22 s^2\; ^{1}S_{0} \rightarrow 1 s^22 s^1 $ of C2+ as a function of incident electron energy. (a) The collision ionization cross sections with temperature T of 100 eV and different electron densities. The black solid line represents the result calculated for the isolated case. The green dotted, violet dotted-dotted-dashed, and red dashed lines represent the results calculated for $ n_e $ values of $ 3\times10^{22}cm^{-3} $, $ 6\times10^{22} $ cm–3, and $ 15\times10^{22} $ cm–3, respectively; (b) The collision ionization cross sections with electron density $ n_e = 9\times10^{22} $ cm–3 and different temperatures. The black solid line represents the result calculated for the isolated case. The orange dotted-dashed, green dotted, and blue dashed lines represent the results calculated for T values of 50 eV, 100 eV, and 180 eV, respectively.

    图 4  碳元素在孤立情况下以及在$ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3的太阳辐射/对流区域边界处条件下, 随着入射电子能量变化的电子碰撞电离截面. (a) 黑色、红色和绿色分别为C+、C2+和C3+的碰撞电离截面计算结果. (b) 蓝色和橙色分别为C4+和C5+的碰撞电离截面计算结果. 在计算中分别考虑了在孤立情况(isolated)、屏蔽效应(no_IPD)和屏蔽效应+电离能(IPD)下降情况下对碰撞电离截面的影响, 在图中分别采用实线、虚线和点线表示

    Fig. 4.  The electron impact ionization cross sections of carbon under isolated conditions and at the solar radiation/convection zone boundary($ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3) as functions of incident electron energy. (a) Black, red, and green lines represent the calculated results for C+, C2+, and C3+, respectively; (b) Blue and orange lines correspond to C4+and C5+, respectively. Here, the solid line represents the calculation results in the isolated case, the dashed line represents the calculation results considering the screening effect at the boundary of the solar radiation/convective region, and the dotted line represents the calculation results further considering the ionization potential depression on the basis of the dashed line.

    图 5  氮、氧元素在$ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3的太阳辐射/对流区域边界处条件下, 随着入射电子能量变化的电子碰撞电离截面. (a) 黑色实线、红色点线、绿色虚线和蓝色点-虚线分别为N+、N2+、N3+和N4+的计算结果; (b) 黑色实线、红色点线、绿色虚线、蓝色点-虚线和橙色点-点-虚线分别为O+、O2+、O3+、O4+和O5+ 的计算结果; (c) 紫色实线、青色点线、粉色虚线和棕色点-虚线分别为N5+、N6+、O6+和O7+的计算结果

    Fig. 5.  The electron impact ionization cross sections for nitrogen and oxygen at the solar radiation/convection zone boundary($ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3) as functions of incident electron energy. (a) Black solid, red dotted, green dashed, and blue dotted-dashed lines represent calculated results for N+, N2+, N3+, and N4+, respectively; (b) Black solid, red dotted, green dashed, blue dotted-dashed, and orange dotted-dotted-dashed lines correspond to O+, O2+, O3+, O4+, and O2+, respectively; (c) Purple solid, cyan dotted, pink dashed, and brown dotted-dashed lines show results for N5+, N6+, O6+, and O7+, respectively.

  • [1]

    Guenther D B, Demarque P, Kim Y C, Pinsonneault M H 1992 ApJ 387 372Google Scholar

    [2]

    Bahcall J N, Ulrich R K 1988 Rev. Mod. Phys. 60 297Google Scholar

    [3]

    Basu S, Grevesse N, Mathis S, Turck-Chièze S 2015 Space Sci. Rev. 196 49Google Scholar

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, et al 2015 Nature 517 56Google Scholar

    [5]

    Fogle M, Bahati E M, Bannister M E, Vane C R, Loch S D, Pindzola M S, Ballance C P, Thomas R D, Zhaunerchyk V, Bryans P, Mitthumsiri W, Savin D W 2008 Astrophys. J. Suppl. Ser. 175 543Google Scholar

    [6]

    Woodruff P R, Hublet M C, Harrison M F A, Brook E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 L679Google Scholar

    [7]

    Falk R A, Stefani G, Camilloni R, Dunn G H, Phaneuf R A, Gregory D C, Crandall D H 1983 Phys. Rev. A 28 91Google Scholar

    [8]

    Loch S D, Witthoeft M, Pindzola M S, Bray I, Fursa D V, Fogle M, Schuch R, Glans P, Ballance C P, Griffin D C 2005 Phys. Rev. A 71 012716Google Scholar

    [9]

    Loch S D, Colgan J, Pindzola M S, Westermann M, Scheuermann F, Aichele K, Hathiramani D, Salzborn E 2003 Phys. Rev. A 67 042714Google Scholar

    [10]

    Alna'washi G A, Aryal N B, Baral K K, Thomas C M, Phaneuf R A, 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135203Google Scholar

    [11]

    Ludlow J A, Ballance C P, Loch S D, Pindzola M S, Griffin D C, 2009 Phys. Rev. A 79 032715Google Scholar

    [12]

    Bray I, McNamara K, Fursa D V 2015 Phys. Rev. A 92 022705Google Scholar

    [13]

    Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 48 1975Google Scholar

    [14]

    Kim Y K, Rudd M E 1994 Phys. Rev. A 50 3954Google Scholar

    [15]

    马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟 2005 物理学报 73 136

    Ma L L, Zhang S P, Zhang F J, Li M J, Jiang J, Ding X B, Jie L Y, Zhang D H, Dong C Z 2005 Acta Phys. Sin. 73 136

    [16]

    Kritcher A L, Swift D C, Döppner T, Bachmann B, Benedict L X, Collins G W, et al 2020 Nature 584 51Google Scholar

    [17]

    Giammichele N, Charpinet S, Fontaine G, Brassard P, Green E M, Van Grootel V, et al 2018 Nature 554 73Google Scholar

    [18]

    Bethkenhagen M, Witte B B L, Schörner M, Röpke G, Döppner T, Kraus D, Glenzer S H, Sterne P A, Redmer R 2020 Phys. Rev. Res. 2 023260Google Scholar

    [19]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, et al 2014 Nature 506 343Google Scholar

    [20]

    Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson N R, Ueda K, Vinko S M, Wark J S, Wurth W 2017 Rep. Prog. Phys. 80 115901Google Scholar

    [21]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, et al 2012 Nature 482 59Google Scholar

    [22]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R D, Burian T, et al 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [23]

    Cho B I, Engelhorn, K Vinko S M, Chung, H K, Ciricosta O, Rackstraw D S, et al 2012 Phys. Rev. Lett. 109 245003Google Scholar

    [24]

    Van den Berg Q Y, Fernandez-Tello E V, Burian T, Chalupský J, Chung H K, Ciricosta1 O, Dakovski G L, et al 2018 Phys. Rev. Lett. 120 055002Google Scholar

    [25]

    Jung Y D, Yoon J S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3549Google Scholar

    [26]

    Jung Y D 1998 Phys. Plasma. 5 536Google Scholar

    [27]

    李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 物理学报 58 5274Google Scholar

    Li B W, Jang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274Google Scholar

    [28]

    Johnson W R, Nilsen J, Cheng K T 2024 High Energ Density Phys. 53 101153Google Scholar

    [29]

    Zeng J, Ye C, Liu P, Gao C, Li Y, Yuan J 2022 Int. J. Mol. Sci 23 6033Google Scholar

    [30]

    Zhang P, J Y, Zan X, Liu P, Li Y, Gao C, Hou Y, Zeng J, Yuan J 2021 Phys. Rev. E 104 035204

    [31]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [32]

    Gu M F 2008 Can. J. Phys. 86 675

    [33]

    Wünsch K, Hilse P, Schlanges M, Gericke D O 2008 Phys. Rev. E 77 056404Google Scholar

    [34]

    Bredow R, Bornath T, Kraeft W D, Redmer R 2013 Contrib. to Plasma Phys. 53 276Google Scholar

    [35]

    Schwarz V, Bornath T, Kraeft W D, Glenzer S H, Höll A, Redmer R 2007 Contrib. to Plasma Phys. 47 324Google Scholar

    [36]

    Bezkrovniy V, Schlanges M, Kremp D, Kraeft W D 2004 Phys. Rev. E 69 061204Google Scholar

    [37]

    Baus M, Hansen J P 1980 Phys. Rep. 59 1Google Scholar

    [38]

    Saumon D, Starrett C E, Kress J D, Clerouin J 2012 High Energy Density Phys. 8 150Google Scholar

    [39]

    Hou Y, Bredow R, Yuan J M, Redmer R 2015 Phys. Rev. E 91 033114Google Scholar

    [40]

    Hou Y, Fu Y S, Bredow R, Kang D, Redmer R, Yuan J 2017 High Energy Density Phys. 22 21Google Scholar

    [41]

    Dharma-Wardana M W C, Taylor R 1981 J. Phys. C: Solid State Phys. 14 629Google Scholar

    [42]

    Feynman R P, Metropolis N, Teller E 1949 Phys. Rev. 75 1561Google Scholar

    [43]

    Thøgersen M, Zinner N T, Jensen A S 2009 Phys. Rev. A 80 043625Google Scholar

    [44]

    Deutsch C 1977 Phys. Lett. A 60 317Google Scholar

    [45]

    Wang Y 2020 Phys. Rev. Lett. 124 017002Google Scholar

    [46]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 91

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 91

    [47]

    Zeng J L, Liu L P, Liu P F, Yuan J M 2014 Phys. Rev. A 90 044701Google Scholar

    [48]

    Cowan R D 1981 The theory of atomic structure and spectra (California: University of California Press) pp214–236

    [49]

    Gaigalas G, Rudzikas Z, Fischer C F 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3747Google Scholar

    [50]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [51]

    Mott N F 1930 Proc.R.Soc.Lond.A 126 259Google Scholar

    [52]

    Vriens L 1969 Case studies in atomic collision physics (Vol. 1) (North-Holland Amsterdam: Press) p335

    [53]

    Bethe H 1930 Ann. Phys. 397 325Google Scholar

    [54]

    Gregory D C, Dittner P F, Crandall D H 1983 Phys. Rev. A 27 724Google Scholar

    [55]

    Bannister M E 1996 Phys. Rev. A 54 1435Google Scholar

    [56]

    Brouillard F, 2013 Atomic processes in electron-ion and ion-ion collisions (Vol. 145) (New York: Springer Science & Business Media Press) pp75–91

    [57]

    Bartschat K 1998 Comput. phys. commun. 114 168Google Scholar

    [58]

    Son S, Thiele R, Jurek Z, Ziaja B, and Santra R, 2014 Phys. Rev. X 4 031004

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, doi: 10.7498/aps.73.20240016
    [2] 马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟. W6+离子的电子碰撞电离研究. 物理学报, doi: 10.7498/aps.73.20240408
    [3] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, doi: 10.7498/aps.70.20201483
    [4] 陈展斌, 马堃. 质子碰撞电离过程中程函近似效应的理论研究. 物理学报, doi: 10.7498/aps.67.20172465
    [5] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型. 物理学报, doi: 10.7498/aps.66.125201
    [6] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, doi: 10.7498/aps.64.086101
    [7] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙. 电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性. 物理学报, doi: 10.7498/aps.64.136103
    [8] 吴传禄, 马颖, 蒋丽梅, 周益春, 李建成. 电离辐射环境下金属-铁电-绝缘体-基底结构铁电场效应晶体管电学性能的模拟. 物理学报, doi: 10.7498/aps.63.216102
    [9] 张立民, 贾昌春, 王琦, 陈长进. 共面双对称条件下电子碰撞Ar原子单电离的一阶扭曲波Born近似. 物理学报, doi: 10.7498/aps.63.153401
    [10] 陈琼, 杨先清, 赵新印, 王振辉, 赵跃民. 周期型二元颗粒链中孤波传播的二体碰撞近似分析. 物理学报, doi: 10.7498/aps.61.044501
    [11] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高能电子碰撞电离对高空核爆炸辐射电离的影响. 物理学报, doi: 10.7498/aps.61.212802
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, doi: 10.7498/aps.60.093401
    [13] 张艳, 郑连存, 张欣欣. 边界耦合的Marangoni对流边界层问题的近似解析解. 物理学报, doi: 10.7498/aps.58.5501
    [14] 郑连存, 盛晓艳, 张欣欣. 一类Marangoni对流边界层方程的近似解析解. 物理学报, doi: 10.7498/aps.55.5298
    [15] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.50.1475
    [16] 颜士翔, 陈重阳, 滕舟轩, 王炎森, 孙永盛. 低和中等电离度离子的电子碰撞电离截面的扭曲波计算. 物理学报, doi: 10.7498/aps.47.583
    [17] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应. 物理学报, doi: 10.7498/aps.44.1719
    [18] 胡畏, 方渡飞, 王炎森, 陆福全, 汤家镛, 杨福家. 包含激发-自电离的类锂离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.1416
    [19] 方渡飞, 王炎森, 胡畏, 高海滨, 陆福全. 类硼离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.40
    [20] 方渡飞, 王炎森, 胡畏. 类氦离子的电子碰撞电离微分截面. 物理学报, doi: 10.7498/aps.41.744
计量
  • 文章访问数:  360
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-24

/

返回文章
返回