搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议

刘畅 孙铭烁 罗一振 董书言 张春辉 王琴

引用本文:
Citation:

基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议

刘畅, 孙铭烁, 罗一振, 董书言, 张春辉, 王琴

Quantum Memory Assisted Measurement-DeviceIndependent Quantum Key Distribution Protocol Based on Double-Scanning Method

LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 基于量子存储辅助的测量设备无关量子密钥分发(MDI-QKD)协议原理上能有效提升量子密钥分发系统的传输距离和密钥率,但现有三强度诱骗态方案受有限长效应影响严重,仍存在密钥率低、安全传输距离受限等问题。针对以上问题,本文提出了一种基于双参数扫描的量子存储辅助MDI-QKD协议,一方面,通过使用四强度诱骗态方法降低有限长效应的影响;另一方面,结合集体约束模型与双参数扫描算法来优化有限样本下的单光子计数率和相位误码率的估算精度,从而有效提升系统的整体性能。同时,本文开展了相关数值仿真计算,仿真结果显示,本方案与现有其他同类MDI-QKD方案,比如基于存储辅助的三强度诱骗态方案以及不使用存储的四强度诱骗态方案相比,在相同的实验条件下,分别提升了超过30公里和100公里的安全传输距离。因此,本文工作将为未来发展远距离量子通信网络提供重要的参考价值。
    Measurement-Device-Independent Quantum Key Distribution (MDIQKD) protocols can effectively resist all possible attacks targeting the measurement devices in a Quantum Key Distribution (QKD) system, thus exhibiting high security. However, due to the protocol's high sensitivity to channel attenuation, its key generation rate and transmission distance are significantly limited in practical applications.
    To improve the performance of MDI-QKD, researchers have proposed quantum memory (QM) assisted MDI-QKD protocols, which have enhanced the protocol's performance to a certain extent. Nevertheless, under finite-size conditions where the total number of transmitted pulses is limited, accurately estimating the relevant statistical parameters remains a challenge. As a result, existing QM-assisted MDI-QKD schemes still suffer from issues such as low key rates and limited secure transmission distances.
    To address these problems, this paper proposes a novel improved finite-size QM-assisted MDI-QKD protocol. By utilizing quantum memories to temporarily store early-arriving pulses and release them synchronously, the protocol effectively reduces the impact caused by channel asymmetry. Additionally, the protocol introduces a four-intensity decoy-state method to improve the estimation accuracy of single-photon components. Meanwhile, to mitigate the impact of finite-length effects on QM schemes, the proposed protocol incorporates a collective constraint model and a double-scanning algorithm to jointly estimate scanning error counts and vacuum-related counts. This approach enhances the estimation accuracy of the single-photon detection rate and phase error rate under finite-size conditions, thereby significantly improving the secure key rate of the MDI-QKD system.
    Simulation results demonstrate that under the same experimental conditions, compared with the existing QM-assisted three-intensity decoystate MDI-QKD protocol and the four-intensity decoy-state MDI-QKD protocol based on Heralded Single-photon Source, (HSPS), the proposed protocol extends the secure transmission distance by more than 30 kilometers and 100 kilometers, respectively. This proves that under the same parameter settings, the proposed scheme exhibits significant advantages in both key rate and secure transmission distance. Therefore, this research provides important theoretical references and valuable benchmarks for the development of long-distance, high-security quantum communication networks.
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503

    [3]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324

    [4]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L-X, Zhou Y H, Chen S-J, Mao Y, Huang M-Q, Zhang W-J et al. 2016 Phys. Rev. Lett. 117 190501

    [5]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402

    [6]

    Chen Y P, Liu J Y, Sun M S et al. 2021 Opt. Lett. 46 3729

    [7]

    Chanelière T, Matsukevich D, Jenkins S, Lan S-Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833-836

    [8]

    Panayi C, Razavi M, Ma X F, Lütkenhaus N 2014 New J. Phys. 16 043005

    [9]

    Piparo N L, Razavi M, Panayi C 2015 IEEE J. Sel. Top. Quantum Electron. 21 138

    [10]

    Pittman T B, Franson J D 2002 Phys. Rev. A 66 062302

    [11]

    Evans C J, Nunn C M, Cheng S W L, Franson J D, Pittman T B 2023 Phys. Rev. A 108 L050601

    [12]

    Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 104001

    [13]

    Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2023 Phys. Rev. Appl. 20 024029

    [14]

    Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309

    [15]

    Mo X F, Zhu B, Han Z F, Gui Y Z, Guo G C 2005 Opt. Lett. 30 2632

    [16]

    Goswami I, Mandal M, Mukhopadhyay S 2022 J. Opt. 51 379

    [17]

    Kaneda F, Xu F H, Chapman J, Kwiat P G 2017 Optica 4 1034

    [18]

    Yu Z W, Zhou Y H, Wang X B 2015 Phys. Rev. A 91 032318

    [19]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612

    [20]

    Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 4732

    [21]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337

    [22]

    Ren Z A, Chen Y P, Liu J Y, Ding H J, Wang Q 2021 IEEE Commun. Lett. 25 940

    [23]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501

    [24]

    Duan L M, Lukin M, Cirac L, Zoller P 2001 Nature 414 413

    [25]

    Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818

    [26]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826

    [27]

    Li X K, Song X Q, Guo Q W, Zhou X Y, Wang Q 2021 Chin. Phys. B 30 060305

    [28]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301

    [29]

    Jozsa R 1994 J. Mod. Opt. 41 2315

  • [1] 李思莹, 朱顺, 胡飞飞, 黄昱, 林旭斌, 覃楚珺, 曹渊, 刘云. 改进的关联源量子密钥分发. 物理学报, doi: 10.7498/aps.74.20250268
    [2] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议. 物理学报, doi: 10.7498/aps.73.20241269
    [3] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, doi: 10.7498/aps.72.20230652
    [4] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, doi: 10.7498/aps.72.20231203
    [5] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化. 物理学报, doi: 10.7498/aps.72.20230160
    [6] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, doi: 10.7498/aps.71.20212245
    [7] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, doi: 10.7498/aps.71.20220344
    [8] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, doi: 10.7498/aps.71.20220083
    [9] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, doi: 10.7498/aps.71.20211803
    [10] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, doi: 10.7498/aps.68.20182215
    [11] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, doi: 10.7498/aps.68.20190039
    [12] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [13] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, doi: 10.7498/aps.63.140303
    [14] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, doi: 10.7498/aps.57.4941
    [15] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, doi: 10.7498/aps.57.678
    [16] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, doi: 10.7498/aps.57.5605
    [17] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, doi: 10.7498/aps.56.1924
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, doi: 10.7498/aps.56.5243
    [19] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, doi: 10.7498/aps.56.6434
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回