-
基于量子存储辅助的测量设备无关量子密钥分发(MDI-QKD)协议原理上能有效提升量子密钥分发系统的传输距离和密钥率,但现有三强度诱骗态方案受有限长效应影响严重,仍存在密钥率低、安全传输距离受限等问题。针对以上问题,本文提出了一种基于双参数扫描的量子存储辅助MDI-QKD协议,一方面,通过使用四强度诱骗态方法降低有限长效应的影响;另一方面,结合集体约束模型与双参数扫描算法来优化有限样本下的单光子计数率和相位误码率的估算精度,从而有效提升系统的整体性能。同时,本文开展了相关数值仿真计算,仿真结果显示,本方案与现有其他同类MDI-QKD方案,比如基于存储辅助的三强度诱骗态方案以及不使用存储的四强度诱骗态方案相比,在相同的实验条件下,分别提升了超过30公里和100公里的安全传输距离。因此,本文工作将为未来发展远距离量子通信网络提供重要的参考价值。Measurement-Device-Independent Quantum Key Distribution (MDIQKD) protocols can effectively resist all possible attacks targeting the measurement devices in a Quantum Key Distribution (QKD) system, thus exhibiting high security. However, due to the protocol's high sensitivity to channel attenuation, its key generation rate and transmission distance are significantly limited in practical applications.
To improve the performance of MDI-QKD, researchers have proposed quantum memory (QM) assisted MDI-QKD protocols, which have enhanced the protocol's performance to a certain extent. Nevertheless, under finite-size conditions where the total number of transmitted pulses is limited, accurately estimating the relevant statistical parameters remains a challenge. As a result, existing QM-assisted MDI-QKD schemes still suffer from issues such as low key rates and limited secure transmission distances.
To address these problems, this paper proposes a novel improved finite-size QM-assisted MDI-QKD protocol. By utilizing quantum memories to temporarily store early-arriving pulses and release them synchronously, the protocol effectively reduces the impact caused by channel asymmetry. Additionally, the protocol introduces a four-intensity decoy-state method to improve the estimation accuracy of single-photon components. Meanwhile, to mitigate the impact of finite-length effects on QM schemes, the proposed protocol incorporates a collective constraint model and a double-scanning algorithm to jointly estimate scanning error counts and vacuum-related counts. This approach enhances the estimation accuracy of the single-photon detection rate and phase error rate under finite-size conditions, thereby significantly improving the secure key rate of the MDI-QKD system.
Simulation results demonstrate that under the same experimental conditions, compared with the existing QM-assisted three-intensity decoystate MDI-QKD protocol and the four-intensity decoy-state MDI-QKD protocol based on Heralded Single-photon Source, (HSPS), the proposed protocol extends the secure transmission distance by more than 30 kilometers and 100 kilometers, respectively. This proves that under the same parameter settings, the proposed scheme exhibits significant advantages in both key rate and secure transmission distance. Therefore, this research provides important theoretical references and valuable benchmarks for the development of long-distance, high-security quantum communication networks.-
Keywords:
- Quantum Key Distribution /
- Quantum Memory /
- Double-Scanning /
- Joint Constraints
-
[1] Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175
[2] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
[3] Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324
[4] Yin H L, Chen T Y, Yu Z W, Liu H, You L-X, Zhou Y H, Chen S-J, Mao Y, Huang M-Q, Zhang W-J et al. 2016 Phys. Rev. Lett. 117 190501
[5] Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402
[6] Chen Y P, Liu J Y, Sun M S et al. 2021 Opt. Lett. 46 3729
[7] Chanelière T, Matsukevich D, Jenkins S, Lan S-Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833-836
[8] Panayi C, Razavi M, Ma X F, Lütkenhaus N 2014 New J. Phys. 16 043005
[9] Piparo N L, Razavi M, Panayi C 2015 IEEE J. Sel. Top. Quantum Electron. 21 138
[10] Pittman T B, Franson J D 2002 Phys. Rev. A 66 062302
[11] Evans C J, Nunn C M, Cheng S W L, Franson J D, Pittman T B 2023 Phys. Rev. A 108 L050601
[12] Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 104001
[13] Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2023 Phys. Rev. Appl. 20 024029
[14] Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309
[15] Mo X F, Zhu B, Han Z F, Gui Y Z, Guo G C 2005 Opt. Lett. 30 2632
[16] Goswami I, Mandal M, Mukhopadhyay S 2022 J. Opt. 51 379
[17] Kaneda F, Xu F H, Chapman J, Kwiat P G 2017 Optica 4 1034
[18] Yu Z W, Zhou Y H, Wang X B 2015 Phys. Rev. A 91 032318
[19] Wang Q, Wang X B 2014 Sci. Rep. 4 4612
[20] Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 4732
[21] Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337
[22] Ren Z A, Chen Y P, Liu J Y, Ding H J, Wang Q 2021 IEEE Commun. Lett. 25 940
[23] Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501
[24] Duan L M, Lukin M, Cirac L, Zoller P 2001 Nature 414 413
[25] Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818
[26] Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826
[27] Li X K, Song X Q, Guo Q W, Zhou X Y, Wang Q 2021 Chin. Phys. B 30 060305
[28] Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301
[29] Jozsa R 1994 J. Mod. Opt. 41 2315
计量
- 文章访问数: 7
- PDF下载量: 0
- 被引次数: 0








下载: