搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体-非晶与非晶-非晶相变行为研究进展

杨海旺 吴戈

引用本文:
Citation:

晶体-非晶与非晶-非晶相变行为研究进展

杨海旺, 吴戈

Progress in Research on Crystalline-Amorphous and Amorphous-Amorphous Phase Transformation Behaviors

Hai-Wang Yang, Ge Wu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非晶合金具有远超于传统金属材料的高强度、高硬度,但由于非晶合金的塑性变形高度局限于剪切带内,致使它的室温塑性变形能力极差。晶体-非晶、非晶-非晶双相结构是解决非晶合金塑性差、脆性高的有效策略之一。相变可实现从单一的晶体、非晶结构向晶体-非晶、非晶-非晶双相结构的转变,通过相变过程中的能量耗散与结构重组,实现超高强度与大的均匀塑性变形。衍生的双相合金可以继承非晶合金的独特性能,如:优异的力学性能、软硬磁性能、储氢性能及催化性能等。基于此,本文综述了晶体-非晶、非晶-非晶相变行为的研究进展,着重讨论了如何通过机械载荷、热处理等手段诱导相变的发生,同时强调了混合焓设计、元素配分对相变行为的重要影响。最后,本文对晶体-非晶与非晶-非晶双相材料的力学和功能特性进行了简单概述。
    Unlike conventional crystalline metals, amorphous alloys possess a distinctive atomic arrangement of short-range order and long-range disorder, so they lack dislocations, grain boundaries and other conventional crystalline defects and therefore exhibit very high strength and hardness. However, their plastic deformation is highly localized into nanoscale shear bands, which readily leads to catastrophic fracture and results in very poor room-temperature ductility. Forming crystalline-amorphous or amorphous- amorphous dual-phase structure is an effective strategy to overcome the brittleness and limited plasticity of amorphous alloys. On the one hand, such heterogeneous architectures promote the formation of multiple shear bands, thereby dissipating energy and redistributing stress; on the other hand, when the amorphous phase size is reduced below roughly 100 nm, the glassy phase can deform by homogeneous flow, and interactions between nanoscale amorphous regions and dislocation activity in the crystalline phase favor more uniform macroscopic plasticity. Mechanical loading, heat treatment and other processing routes can drive the transformation from crystalline single-phase or amorphous states to crystalline-amorphous or amorphous-amorphous dual-phase structures, enabling a simultaneous achievement of ultrahigh strength and substantial uniform plastic deformation. The resulting dual-phase alloys can retain the unique properties of amorphous alloys. Accordingly, this review summarizes recent advances in crystalline-amorphous and amorphous-amorphous phase- transformation behavior:
    (1) Mechanical loading (friction, TRIP effects) can induce phase transformations. During frictional wear, materials experience large shear strains and stress concentrations; together with chemical reaction, these conditions can produce crystalline-amorphous dual-phase structures at the surface. Under externally applied loads, phase transformations and microstructural reconfiguration occur; crystalline-amorphous and amorphous-amorphous TRIP effects become the primary mechanisms for energy dissipation, thereby delaying local stress concentration and improving ductility and fracture resistance.
    (2) Thermal annealing above the glass transition temperature commonly induces crystallization of amorphous alloys, leading to in-situ precipitation of nanocrystals within the amorphous matrix. By controlling annealing temperature and time, the size and volume fraction of the precipitates can be tuned, and more refined heat-treatment paths can even trigger amorphous-amorphous transformation.
    (3) Mixing enthalpy design and elemental partitioning play important roles in crystalline-amorphous and amorphous-amorphous phase behaviors. Elements with large negative mixing enthalpies tend to attract and enrich one another, whereas those with positive mixing enthalpies tend to repel; mechanical loading, thermal treatment and other external driving forces further promote atomic diffusion and elemental redistribution, which mediate the formation of crystalline-amorphous and amorphous- amorphous dual-phase structures.
    (4) These unique structures endow crystalline-amorphous and amorphous-amorphous dual-phase alloys with excellent strength-ductility combinations as well as advantageous magnetic, hydrogen-storage and catalytic properties. Future research should concentrate on three directions: (Ⅰ) establishing a thermodynamic design framework centered on mixing enthalpy to clarify how compositional changes affect phase stability; (Ⅱ) developing large-scale, and mass-producible routes for dual-phase materials; and (Ⅲ) designing application-oriented dual-phase alloy systems that are low-cost, simple to fabricate, and have long service lives, thereby accelerating their industrial deployment in energy, precision machinery, electronics and communications, aerospace, and biomedical fields.
  • [1]

    Wang Z, Wang B, Zhang M, Guo R P, Wang X J, Qiao J W, Wang Z H 2024 J. Mater. Eng. Perform. 33 274

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [4]

    Freed R L, Vander Sande J B 1978 J. Non-Cryst. Solids 27 9

    [5]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [6]

    Pauly S, Gorantla S, Wang G, Kühn U, Eckert J 2010 Nat. Mater. 9 473

    [7]

    Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670

    [8]

    Wang W H 2022 BCAS 37 352(in Chinese) [汪卫华 2022 中国科学院院刊 37 352]

    [9]

    Miyoshi K, Buckley D H 1984 Thin Solid Films 118 363

    [10]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [11]

    Brenner A, Couch D E, Williams E K 1950 J. Res. Nat. Bur. Stand 44 109

    [12]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049

    [13]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [14]

    Zhang C Y, Zhu Z W, Li S T, Wang Y Y, Li Z K, Li H, Yuan G, Zhang H F 2024 J. Mater. Sci. Technol. 181 115

    [15]

    Qin F X, Xie G Q, Dan Z H, Zhu S L, Seki I 2013 Intermetallics 42 9

    [16]

    Zhang W, Guo H, Li Y H, Wang Y M, Wang H, Chen M W, Yamaura S 2014 J. Alloys Compd. 617 310

    [17]

    Zeng Y Q, Nishiyama N, Inoue A 2009 Mater. Trans. 50 1243

    [18]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. 30 965

    [19]

    Li Q 2006 Mater. Lett. 60 3113

    [20]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [21]

    Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99

    [22]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [23]

    Zheng Q, Ma H, Ma E, Xu J 2006 Scr. Mater. 55 541

    [24]

    Gu X J, McDermott A G, Poon S J, Shiflet G J 2006 Appl. Phys. Lett. 88 211905

    [25]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [26]

    Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L 2008 Nature 451 1085

    [27]

    Rastogi P K, Duwez P 1970 J. Non-Cryst. Solids 5 1

    [28]

    Duhaj P, Barancok D, Ondrejka A 1976 J. Non-Cryst. Solids 21 411

    [29]

    Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P 2010 Adv. Mater. 22 2770

    [30]

    Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P 2011 Acta Mater. 59 2928

    [31]

    Wu Y, Ma D, Li Q K, Stoica A D, Song W L, Wang H, Liu X J, Stoica G M, Wang G Y, An K, Wang X L, Li M, Lu Z P 2017 Acta Mater. 124 478

    [32]

    Boucharat N, Hebert R, Rösner H, Valiev R, Wilde G 2005 Scr. Mater. 53 823

    [33]

    Hebert R J, Perepezko J H 2004 Mater. Sci. Eng. A 375 728

    [34]

    He Y, Shiflet G J, Poon S J 1995 Acta Metall. Mater. 43 83

    [35]

    Qin W, Nagase T, Umakoshi Y 2009 Acta Mater. 57 1300

    [36]

    Nagase T, Umakoshi Y 2003 Scr. Mater. 48 1237

    [37]

    Shao L, Gorman B P, Aitkaliyeva A, David Theodore N, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [38]

    Sypien A, Kusinski J, Kusinski G J, Chris Nelson E 2003 Mater. Chem. Phys. 81 390

    [39]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [40]

    Wu G, Chan K C, Zhu L L, Sun L G, Lu J 2017 Nature 545 80

    [41]

    Wu G, Liu C, Sun L G, Wang Q, Sun B A, Han B, Kai J J, Luan J H, Liu C T, Cao K, Lu Y, Cheng L Z, Lu J 2019 Nat. Commun. 10 5099

    [42]

    Wang J G, Choi B W, Nieh T G, Liu C T 2000 J. Mater. Res. 15 913

    [43]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

    [44]

    Zhang Y H, Xu C, Yang T, Hou Z H, Zhang G F, Zhao D L 2012 Adv. Mat. Res. 557 1169

    [45]

    Mihailov L, Spassov T, Bojinov M 2012 Int. J. Hydrog. Energy 37 10499

    [46]

    Zeng Q S, Li Y C, Feng C M, Liermann P, Somayazulu M, Shen G Y, Mao H K, Yang R, Liu J, Hu T D, Jiang J Z 2007 PNAS 104 13565

    [47]

    Du Q, Liu X J, Zeng Q S, Fan H Y, Wang H, Wu Y, Chen S W, Lu Z P 2019 Phys. Rev. B 99 014208

    [48]

    Du Q, Liu X J, Fan H Y, Zeng Q S, Wu Y, Wang H, Chatterjee D, Ren Y, Ke Y B, Voyles P M, Lu Z P, Ma E 2020 Mater. Today 34 66

    [49]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [50]

    Cao Y H, Yang M, Du Q, Chiang F K, Zhang Y J, Chen S W, Ke Y B, Lou H B, Zhang F, Wu Y, Wang H, Suihe J, Zhang X B, Zeng Q S, Liu X J, Lu Z P 2024 Nat. Commun. 15 6702

    [51]

    Tsuchiya K, Waitz T, Hara T, Karnthaler H P, Todaka Y, Umemoto M 2008 EMC 2008 14th European Microscopy Congress ( Aachen: Springer) p385

    [52]

    Zhao S T, Li Z Z, Zhu C Y, Yang W, Zhang Z R, Armstrong D E J, Grant P S, Ritchie R O, Meyers M A 2021 Sci. Adv. 7 eabb3108

    [53]

    Song M, Darsell J, Jana S 2022 J. Mater. Sci. 57 12055

    [54]

    Ren Y, Huang Z B, Wang Y C, Zhou Q, Yang T, Li Q K, Jia Q, Wang H F 2023 Compos. Part B Eng. 263 110833

    [55]

    Luo J S, Sun W T, Liang D S, Chan K C, Yang X S, Ren F Z 2023 Acta Mater. 243 118503

    [56]

    Yin C H, Liang Y L, Liang Y, Li W, Yang M 2019 Acta Mater. 166 208

    [57]

    Liu C, Li Z M, Lu W J, Bao Y, Xia W Z, Wu X X, Zhao H, Gault B, Liu C L, Herbig M, Fischer A, Dehm G, Wu G, Raabe D 2021 Nat. Commun. 12 5518

    [58]

    Han H N, Lee C G, Oh C S, Lee T H, Kim S J 2004 Acta Mater. 52 5203

    [59]

    Zhu R, Li S, Karaman I, Arroyave R, Niendorf T, Maier H J 2012 Acta Mater. 60 3022

    [60]

    Kwok T W J, Dye D 2023 Int. Mater. Rev. 68 1098

    [61]

    Zackay V F, Parker E R, Fahr D, Busch R 1967 ASM Trans. Quart. 60 252

    [62]

    Richman R H, Bolling G F 1971 Metall. Trans. 2 2451

    [63]

    Parker E R, Zackay V F 1973 Eng. Fract. Mech. 5 147

    [64]

    Jiménez Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Van Der Zwaag S 2009 Acta Mater. 57 533

    [65]

    Sugimoto K I, Kobayashi J, Nakajima Y, Kochi T 2014 Mater. Sci. Forum 783 1015

    [66]

    Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P 2012 Phys. Rev. Lett. 109 245506

    [67]

    Fu X L, Wang G, Wu Y, Song W L, Shek C H, Zhang Y, Shen J, Ritchie R O 2020 Int. J. Plast. 128 102687

    [68]

    Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223

    [69]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [70]

    Inoue A 2000 Acta Mater. 48 279

    [71]

    Yang L, Miller M K, Wang X L, Liu C T, Stoica A D, Ma D, Almer J, Shi D L 2009 Adv. Mater. 21 305

    [72]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718

    [73]

    Dong W X, Wu Z D, Ge J C, Liu S N, Lan S, Gilbert E P, Ren Y, Ma D, Wang X L 2021 Appl. Phys. Lett. 118 191901

    [74]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R Rep. 74 71

    [75]

    Zhang T, Inoue A 2004 Mater. Sci. Eng. A 375 432

    [76]

    Wang J, Kaban I, Levytskyi V, Li R, Han J, Stoica M, Gumeniuk R, Nielsch K 2021 J. Alloys Compd. 860 158398

    [77]

    Gu X J, Poon S J, Shiflet G J 2007 J. Mater. Res. 22 344

    [78]

    Nollmann N, Binkowski I, Schmidt V, Rösner H, Wilde G 2016 Scr. Mater. 111 119

    [79]

    Zhou J, Wu Y, Jiang S H, Song W L, Huang H L, Mao H H, Wang H, Liu X J, Wang X Z, Lu Z P 2020 Mater. Res. Lett. 8 23

    [80]

    Zhang Q S, Zhang H F, Zhu Z W, Hu Z Q 2005 Mater. Trans. 46 730

    [81]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027

    [82]

    Fan C, Inoue A 2000 Appl. Phys. Lett. 77 46

    [83]

    Lee C M, Chae S W, Kim H J, Lee J C 2007 Met. Mater. Int. 13 191

    [84]

    Kim H S, Hong S I 1999 Acta Mater. 47 2059

    [85]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729

    [86]

    Herzer G 1997 Handb. Magn. Mater. 10 415

    [87]

    Wu Y, Dong Y Q, Yang M N, Jia X J, Liu Z H, Lu H, Zhang H J, He A N, Li J W 2022 Metals 12 845

    [88]

    Jain I P, Lal C, Jain A 2010 Int. J. Hydrogen Energy 35 5133

    [89]

    Crivello J C, Dam B, Denys R V, Dornheim M, Grant D M, Huot J, Jensen T R, De Jongh P, Latroche M, Milanese C, Milčius D, Walker G. S, Webb C J, Zlotea C, Yartys V A 2016 Appl. Phys. A 122 97

    [90]

    Huang L J, Wang Y X, Wu D C, Tang J G, Wang Y, Liu J X, Huang Z, Jiao J Q, Liu J Q 2014 J. Power Sources 249 35

    [91]

    Au M 2005 Mater. Sci. Eng. B 117 37

    [92]

    Zhang Y H, Wang P P, Bu W G, Yuan Z M, Qi Y, Guo S H 2018 RSC Adv. 8 23353

    [93]

    Zhang Q A, Jiang C J, Liu D D 2012 Int. J. Hydrogen Energy 37 10709

    [94]

    Song L M, Li W, Wang G L, Zhang M H, Tao K Y 2007 Catal. Today 125 137

    [95]

    Deng Y, Yang Y Y, Ge L Y, Yang W Z, Xie K N 2017 Appl. Surf. Sci. 425 261

    [96]

    Wang P P, Wang J Q, Huo J T, Xu W, Wang X M, Wang G 2017 Sci. China Phys. Mech. Astron. 60 076112

    [97]

    Zhao Y M, Chen Q J, Ji L, Wang K, Huang G S 2024 React. Kinet. Mech. Cat. 137 1209

    [98]

    Zhang J, Qiao M, Li Y F, Shao Q, Huang X Q 2019 ACS Appl. Mater. Interfaces 11 39722

    [99]

    Ghobrial S, Kirk D W, Thorpe S J 2019 Electrocatalysis 10 243

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, doi: 10.7498/aps.73.20231081
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, doi: 10.7498/aps.71.20220124
    [3] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, doi: 10.7498/aps.69.20191877
    [4] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, doi: 10.7498/aps.69.20200240
    [5] 任景莉, 于利萍, 张李盈. 非晶物质中的临界现象. 物理学报, doi: 10.7498/aps.66.176401
    [6] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, doi: 10.7498/aps.66.146201
    [7] 员江娟, 陈铮, 李尚洁. 双模晶体相场研究形变诱导的多级微结构演化. 物理学报, doi: 10.7498/aps.63.098106
    [8] 员江娟, 陈铮, 李尚洁, 张静. 晶体相场法研究预变形对熔点附近六角相/正方相相变的影响. 物理学报, doi: 10.7498/aps.63.166401
    [9] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, doi: 10.7498/aps.63.037301
    [10] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, doi: 10.7498/aps.61.246501
    [11] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.1219
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, doi: 10.7498/aps.59.8167
    [13] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究. 物理学报, doi: 10.7498/aps.59.6480
    [14] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, doi: 10.7498/aps.58.1936
    [15] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, doi: 10.7498/aps.58.29
    [16] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, doi: 10.7498/aps.58.2083
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [18] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, doi: 10.7498/aps.56.6521
    [19] 胡建刚, 王震遐, 勇震中, 李勤涛, 朱志远. 40Ar+诱导无定形碳到金刚石纳米晶相变的研究. 物理学报, doi: 10.7498/aps.55.6538
    [20] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, doi: 10.7498/aps.54.1306
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-22

/

返回文章
返回