搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克等离子体中电磁测地声模的回旋动理学分析

陈哲 任海骏 王灏

引用本文:
Citation:

托卡马克等离子体中电磁测地声模的回旋动理学分析

陈哲, 任海骏, 王灏

Gyro-kinetic analysis of electromagnetic geodesic acoustic modes in tokamak plasmas

CHEN Zhe, REN Haijun, WANG Hao
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 托卡马克等离子体中的测地声模(Geodesic acoustic mode,GAM)及其伴随的电磁场扰动在湍流调控与约束改善中发挥着重要作用.然而,现有的动理学理论与磁流体力学(Magnetohydrodynamics,MHD)在描述GAM扰动磁场的三维结构上存在一个显著差异,即动理学描述通常采用平行磁矢势近似,而无法自洽给出GAM的径向与环向磁场扰动.为弥合理论上的这一差异,本文在线性电磁回旋动理学框架下,摒弃了传统的平行磁矢势近似,保留完整的扰动磁矢势,并结合准中性条件及安培定律,自洽地推导了GAM的电磁扰动特性.推导结果首次在动理学层面自洽给出了GAM磁场扰动在径向、极向与平行(环向)方向上的完整三维结构:径向与极向磁场扰动呈现m=2(m是极向波数)的驻波形式,而平行磁场扰动则呈现m=1的结构.该结果在定性上与理想MHD理论的预测高度一致,从而弥合了长期以来两种理论在电磁GAM描述上的分歧.此外,动理学模型能够清晰区分电子与离子的贡献,进一步分析表明:离子热压对径向和极向磁场扰动的作用更为显著,而电子热压在平行磁场扰动中的贡献相对更大.这展现了动理学效应对GAM电磁特性的细致修正,为相关实验诊断与数值模拟研究提供了更加精确的理论依据.
    Geodesic acoustic modes (GAMs), the high-frequency branch of zonal flows, play a crucial role in regulating turbulence and the associated anomalous transport in tokamaks. Although often treated as electrostatic oscillations, GAMs intrinsically possess an electromagnetic component, manifested as magnetic field perturbations. This component is essential for GAM's interaction with electromagnetic turbulence and for the existence of global GAM eigenmodes. However, a long-standing discrepancy exists between magnetohydrodynamic (MHD) and gyro-kinetic theories regarding the three-dimensional (3D) structure of these perturbations. MHD models consistently predict a full 3D structure, with dominant $m=2$ components in the radial and poloidal magnetic field perturbations and dominant $m=1$ component in the toroidal magnetic field perturbation, where $m$ denotes the poloidal wavenumber. In contrast, most gyro-kinetic studies, adopting the conventional parallel vector potential approximation ($\delta\vec{A} \approx \delta A_\|\vec{b}$), are restricted to describing only the $m=2$ poloidal component while systematically neglecting the radial and parallel (toroidal) components. This limitation has created a theoretical gap, preventing a unified understanding of the electromagnetic nature of GAMs.
    To address this issue, we employ a self-consistent electromagnetic gyro-kinetic model without invoking the parallel vector potential approximation. Starting from the linear electromagnetic gyro-kinetic equation, we describe the perturbed distribution functions of both ions and electrons. The model is closed with a self-consistent set of field equations—including the quasi-neutrality condition and both the parallel and perpendicular components of Ampère’s law—which determine the evolution of the electrostatic potential $\delta\phi$, the parallel vector potential $\delta A_\|$, and the parallel magnetic perturbation $\delta B_\|$ (associated with the perpendicular vector potential $\delta A_\perp$). By retaining the full perturbed magnetic vector potential $\delta\vec{A}$, the framework naturally incorporates both parallel current perturbations (linked to $\delta A_\|$) and diamagnetic effects (linked to $\delta B_\|$). Analytical solutions are obtained in the long-wavelength limit for a large-aspect-ratio, circular tokamak, including first-order finite-Larmor-radius (FLR) and finite-orbit-width (FOW) effects.
    For the first time within a gyro-kinetic framework, our analysis yields the complete 3D magnetic perturbation structure of the electromagnetic GAM. The results explicitly demonstrate that the radial ($\delta B_r$) and poloidal ($\delta B_\theta$) perturbations exhibit a dominant $m=2$ standing-wave structure, while the parallel perturbation ($\delta B_\|$) exhibits a dominant $m=1$ structure. This spatial structure is in excellent qualitative agreement with the predictions of ideal MHD theory, thereby resolving the long-standing discrepancy between the two theoretical approaches. Moreover, the gyro-kinetic model provides a refined physical picture beyond the reach of single-fluid MHD. The analytical expressions reveal distinct roles of ions and electrons: the $m=2$ radial and poloidal magnetic field perturbations, associated with parallel currents, are more strongly influenced by the ion thermal pressure, whereas the $m=1$ parallel magnetic field perturbation, linked to diamagnetic effects, receives a relatively larger contribution from the electron thermal pressure. These results not only unify the theoretical description of GAM magnetic perturbations but also advance our understanding of their kinetic physics, offering a more accurate foundation for experimental diagnostics and numerical simulation.
  • [1]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835

    [2]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [3]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448

    [4]

    Conway G D, Smolyakov A I, Ido T 2022 Nucl. Fusion 62 013001

    [5]

    Falchetto G L, Ottaviani M, Garbet X, Smolyakov A 2007 Phys. Plasmas 14 082304

    [6]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [7]

    Hong W Y, Yan L W, Zhao K J, Lan T, Dong J Q, Yu C X, Cheng J, Qian J, Liu A D, Luo C W, Xu Z Y, Huang Y, Yang Q W 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉,严龙文,赵开君, 兰涛,董家齐,俞昌旋,程均,钱俊,刘阿棣,罗萃文,徐征宇,黄渊,杨青巍 2008 物理学报 57 962]

    [8]

    Sasaki M, Itoh K, Nagashima Y, Ejiri A, Takase Y 2009 Phys. Plasmas 16 022306

    [9]

    Hallatschek K, Biskamp D 2001 Phys. Rev. Lett. 86 1223

    [10]

    Hahm T S, Beer M A, Lin Z, Hammett G W, Lee W W, Tang W M 1999 Phys. Plasmas 6 922

    [11]

    Hamada Y, Watari T, Nishizawa A, Yamagishi O, Narihara K, Kawasumi Y, Ido T, Kojima M, Toi K 2010 Nucl. Fusion 50 025001

    [12]

    Holland C, Tynan G R, Fonck R J, McKee G R, Candy J, Waltz R E 2007 Phys. Plasmas 14 056112

    [13]

    Scott B 2003 Phys. Lett. A 320 53

    [14]

    Miyato N, Kishimoto Y, Li J 2004 Phys. Plasmas 11 5557

    [15]

    Fu G Y 2008 Phys. Rev. Lett. 101 185002

    [16]

    Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J, McKee G R 2008 Phys. Rev. Lett. 101 185001

    [17]

    Wei G Y, Chen N F, Qiu Z Y 2022 Acta Phys. Sin. 71 015201 (in Chinese) [魏广宇,陈凝飞,仇志 勇 2022 物理学报 71 015201]

    [18]

    Fisher R K, Pace D C, Kramer G J, Van Zeeland M A, Nazikian R, Heidbrink W W, García-Muñoz M 2012 Nucl. Fusion 52 123015

    [19]

    Zarzoso D, Del-Castillo-Negrete D, Escande D F, Sarazin Y, Garbet X, Grandgirard V, Passeron C, Latu G, Benkadda S 2018 Nucl. Fusion 58 106030

    [20]

    Sasaki M, Itoh K, Itoh S I 2011 Plasma Phys. Control. Fusion 53 085017

    [21]

    Zarzoso D, Biancalani A, Bottino A, Lauber P, Poli E, Girardo J B, Garbet X, Dumont R J 2014 Nucl. Fusion 54 103006

    [22]

    Wang H, Todo Y, Osakabe M, Ido T, Suzuki Y 2019 Nucl. Fusion 59 096041

    [23]

    Wang H, Todo Y, Osakabe M, Ido T, Suzuki Y 2020 Nucl. Fusion 60 112007

    [24]

    Osakabe M, et al. 2014 In Proceedings of the 25th IAEA International Conference on Fusion Energy (St Petersburg, Russian Federation: International Atomic Energy Agency). Paper EX/10-3

    [25]

    Ren H 2014 Phys. Plasmas 21 064502

    [26]

    Zhou D 2007 Phys. Plasmas 14 104502

    [27]

    Wahlberg C 2008 Phys. Rev. Lett. 101 115003

    [28]

    Wahlberg C 2009 Plasma Phys. Control. Fusion 51 085006

    [29]

    Wang L, Dong J Q, Shen Y, He H D 2011 Phys. Plasmas 18 052506

    [30]

    Wahlberg C, Graves J P 2016 Plasma Phys. Control. Fusion 58 075014

    [31]

    Huang W, Ren H, Xu X Q 2019 Phys. Plasmas 26 022506

    [32]

    Chen Z, Ren H, Wang H, Roach C M 2025 Plasma Phys. Control. Fusion 67 045008

    [33]

    Xie B, Ye L, Chen Y, Zhao P, Guo W, Xiang N 2022 Plasma Phys. Control. Fusion 64 095009

    [34]

    Guo W, Ma J 2024 Plasma Phys. Control. Fusion 66 035005

    [35]

    De Meijere C A, Coda S, Huang Z, Vermare L, Vernay T, Vuille V, Brunner S, Dominski J, Hennequin P, Krämer-Flecken A 2014 Plasma Phys. Control. Fusion 56 072001

    [36]

    Bulanin V V, Gusev V K, Iblyaminova A D, Khromov N A, Kurskiev G S, Minaev V B, Patrov M I, Petrov A V, Petrov Y V, Sakharov N V 2015 Nucl. Fusion 56 016017

    [37]

    Seidl J, Krbec J, Hron M, Adamek J, Hidalgo C, Markovic T, Melnikov A V, Stockel J, Weinzettl V, Aftanas M 2017 Nucl. Fusion 57 126048

    [38]

    Wang M Y, Zhou C, Liu A D, Zhang J, Liu Z Y, Feng X, Ji J X, Li H, Lan T, Xie J L 2018 Phys. Plasmas 25 102508

    [39]

    Lin D J, Heidbrink W, Crocker N, Du X, Nazikian R, Van Zeeland M, Barada K 2022 Nucl. Fusion 62 112010

    [40]

    Berk H L, Boswell C J, Borba D, Figueiredo A C A, Johnson T, Nave M F F, Pinches S D, Sharapov S E 2006 Nucl. Fusion 46 S888

    [41]

    Boswell C J, Berk H L, Borba D N, Johnson T, Pinches S D, Sharapov S E 2006 Phys. Lett. A 358 154

    [42]

    Ilgisonis V I, Khalzov I V, Lakhin V P, Smolyakov A I, Sorokina E A 2014 Plasma Phys. Control. Fusion 56 035001

    [43]

    Lakhin V P, Sorokina E A 2014 Phys. Lett. A 378 535

    [44]

    Smolyakov A I, Nguyen C, Garbet X 2008 Plasma Phys. Control. Fusion 50 115008

    [45]

    Melnikov A V, Eliseev L G, Lysenko S E, Ufimtsev M V, Zenin V N 2017 Nucl. Fusion 57 115001

    [46]

    Riggs G A, Nogami S H, Koepke M E, Melnikov A V, Eliseev L G, Lysenko S E, Khabanov P O, Drabinskij M A, Kharchev N K, Kozachek A S 2021 J. Plasma Phys. 87 885870301

    [47]

    Kennedy D, Roach C M, Giacomin M, Ivanov P, Adkins T, Sheffeld F, Görler T, Bokshi A, Dickinson D, Dudding H G 2024 Nucl. Fusion 64 086049

    [48]

    Frieman E A, Chen L 1982 Phys. Fluids 25 502

    [49]

    Gao Z, Itoh K, Sanuki H, Dong J Q 2006 Phys. Plasmas 13 100702

    [50]

    Ren H 2015 Phys. Plasmas 22 072502

    [51]

    Chen Z, Li Y, Ren H, Wang H 2025 Nucl. Fusion 65 044001

  • [1] 刘赞奇, 罗源, 翁万良, 何清, 陶实. 变温壁驱动腔内热蠕流特性的离散统一气体动理学格式模拟. 物理学报, doi: 10.7498/aps.74.20241334
    [2] 赵悦悦, 缪阳, 杨唯, 杜诚然. 尘埃颗粒对低气压射频等离子体中非局域动理学的影响. 物理学报, doi: 10.7498/aps.74.20251096
    [3] 张创, 郭照立. 离散统一气体动理学格式及其多尺度导热应用. 物理学报, doi: 10.7498/aps.74.20250694
    [4] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, doi: 10.7498/aps.73.20231679
    [5] 罗晓丽, 高建华. 嘉当韦尔基下的非阿贝尔手征动理学方程. 物理学报, doi: 10.7498/aps.72.20222471
    [6] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究. 物理学报, doi: 10.7498/aps.72.20222196
    [7] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究. 物理学报, doi: 10.7498/aps.72.20230255
    [8] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性. 物理学报, doi: 10.7498/aps.71.20211204
    [9] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, doi: 10.7498/aps.71.20221156
    [10] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, doi: 10.7498/aps.71.20211430
    [11] 吴永存, 杨兴林, 石金水, 赵良超, 何小中. 医用回旋加速器回旋频率与磁场的调谐. 物理学报, doi: 10.7498/aps.68.20190116
    [12] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用. 物理学报, doi: 10.7498/aps.63.085207
    [13] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟. 物理学报, doi: 10.7498/aps.55.267
    [14] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, doi: 10.7498/aps.52.1337
    [15] 李芳昱, 石东平, 代洪霞. 静磁场中双极化态弱平面引力波对高斯束的扰动能量. 物理学报, doi: 10.7498/aps.52.2706
    [16] 张大成, 王鹿霞, 刘德胜, 韩圣浩, 解士杰. 扰动对一维局域模的影响. 物理学报, doi: 10.7498/aps.52.3191
    [17] 屈卫星, 余玮, 张文琦, 徐至展. 电磁波与电离波面相互作用过程中的静磁场模和振荡电场. 物理学报, doi: 10.7498/aps.46.661
    [18] 朱莳通, 沈文达. Schwarzschild黑洞整体正规时空中的测地运动. 物理学报, doi: 10.7498/aps.35.819
    [19] 吴元燕, 张晋林. 变磁场回旋管物理特性的数值研究. 物理学报, doi: 10.7498/aps.32.1526
    [20] 吴苍生, 戴光曦, 刘功谆, 丁渝. 弱磁场中质子的自由进动和一个野外测磁场的实验. 物理学报, doi: 10.7498/aps.21.1175
计量
  • 文章访问数:  50
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-25

/

返回文章
返回