搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续空结果测量方案的相位估计精度保护

贺志 罗嘉涛 韦和

引用本文:
Citation:

基于连续空结果测量方案的相位估计精度保护

贺志, 罗嘉涛, 韦和

Protection of phase estimation precision based on continuous null-result measurements

HE Zhi, LUO Jiatao, WEI He
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文研究了基于连续空结果测量方案来提高一个二能级原子在遭受一个零温度玻色热库环境影响下其相位估计精度问题.首先通过解析的方法,得到了在热库环境中执行了n次空结果的测量以后原子系统最终态的表达式.为了更加突出连续测量在二能级原子动力学中的重要作用,将最终态中核心的振幅系数改成一种特殊的形式,获得了振幅系数一个非常简洁的数学表示式.有趣的是,我们发现:基于连续测量的二能级原子动力学由环境的谱宽度和测量的时间间隔乘积的标度参数密切相关,且在一些特殊情况下可以退化成已经存在的量子芝诺效应和马尔科夫近似的结果.进一步,我们也发现:不管是马尔科夫和非马尔科夫条件下,通过调节这个标度参数,二能级原子的相位估计的量子Fisher信息都能得到显著的提高.总之,本文中对环境后选择的空结果频繁测量方案可以有效降低退相干对量子Fisher信息的破坏作用,这一结果为开放量子系统中实现高精度测量提供了新的理论方案.
    Quantum Fisher Information plays a central role in the fields of quantum metrology and quantum precision measurement. However, quantum systems are susceptible to the influence of noisy environments, which reduces the precision of parameter estimation (as measured by quantum Fisher information). Therefore, overcoming the impact of environmental noise on quantum systems to enhance the quantum Fisher information of parameters has become an important scientific issue in quantum precision measurement. In this paper, we investigate the enhancement of phase estimation precision for a two-level atom subjected to a zero-temperature bosonic environment, based on a continuous null-result measurement scheme. First, an analytical expression for the final state of the atomic system after n null-result measurements is derived. To highlight the crucial role of continuous measurement in the dynamics of the two-level atom, the core amplitude coefficient in the final state is reformulated into a specific form, yielding a concise mathematical expression. Interestingly, we find that the dynamics of the two-level atom under continuous measurements are closely related to a scaling parameter—the product of the environmental spectral width and the measurement time interval. In certain special cases, this formulation reduces to known results such as the quantum Zeno effect and Markovian approximations. Furthermore, we demonstrate that, under both Markovian and non-Markovian conditions, the quantum Fisher information for the atomic phase estimation can be significantly enhanced by tuning this scaling parameter. Using an exactly solvable model, we also provide an explanation for the quantum Zeno effect without explicit use of the projection postulate, and find that in certain limits, a concise formula for $\tilde{h}(t) = h^n(\tau)$ accurately captures the numerical results across a broad range of parameters. In summary, the proposed scheme of frequent null-result measurements with post-selection on the environment effectively mitigates the detrimental effects of decoherence on the quantum Fisher information, offering a novel theoretical approach for achieving high-precision measurements in open quantum systems.
  • [1]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [3]

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese) [任志红, 李岩, 李艳 娜, 李卫东 2019 物理学报 68 040601]

    [4]

    Helstrom C W 1969 J. Stat. Phys. 1 231

    [5]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [6]

    Fisher R A 1925 Theory of statistical estimation (Oxford: Oxford University Press)

    [7]

    Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103

    [8]

    He Z, Jiang D K, Li Y 2022 Acta Phys. Sin. 71 210303 (in Chinese) [贺志, 蒋登魁, 李艳 2022 物 理学报 71 210303]

    [9]

    Song H, Luo S, Hong Y 2015 Phys. Rev. A 91 042110

    [10]

    Hyllus P, Laskowski W, Krischek R, et al. 2012 Phys. Rev. A 85 022321

    [11]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301

    [12]

    Hong Y, Luo S L, Song H 2015 Phys. Rev. A 91 042313

    [13]

    Liu R, Wu Z, Li Y C, Chen Y Q, Peng X H 2023 Acta Phys. Sin. 72 110305 (in Chinese) [刘然, 吴 泽, 李宇晨, 陈昱全, 彭新华 2023 物理学报 72 110305]

    [14]

    Guo W, Zhong W, Jing X X, Fu L B, Wang X 2016 J. Phys. A 93 042115

    [15]

    Albarelli F, Friel J F, Datta A 2019 Phys. Rev. Lett. 123 200503

    [16]

    Liu J, Yuan H, Lu X M, Wang X 2020 J. Phys. A 53 023001

    [17]

    Lu X M, Wang X 2016 Phys. Rev. Lett. 126 120503

    [18]

    Yu M, Li D, Wang J, et al. 2021 Physical Review Research 3 043122

    [19]

    Zhang X, Lu X M, Liu J, et al. 2021 Phys. Rev. A 107 012414

    [20]

    Yu X, Zhang C J 2023 Phys. Rev. A 108 022215

    [21]

    Li J, Ding H T, Zhang D W 2023 Acta Phys. Sin. 72 200601 (in Chinese) [李竞, 丁海涛, 张丹伟 2023 物理学报 72 200601]

    [22]

    Yu X, Zhao X, Li L, Hu X M, et al. 2024 Sci. Adv. 10 eadk7616

    [23]

    Ren J F, Li J, Ding H T, Zhang D W 2024 Phys. Rev. A 110 052203

    [24]

    Wang Y C, Li J, Duan L W, Chen Q H J 2025 Phys. Rev. A 112 043704

    [25]

    Ma J, Huang Y X, Wang X, Sun C P 2011 Phys. Rev. A 84 022302

    [26]

    Chin A W, Huelga S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601

    [27]

    Wang Y S, Chen C, An J H 2017 New J. Phys. 19 113019

    [28]

    Wu W, Peng Z, Bai S Y, An J H 2021 Phys. Rev. Applied 15 054042

    [29]

    Bai S Y, An J H 2023 Phys. Rev. Lett. 131 050801

    [30]

    Liu J, Jing X, Wang X 2013 Phys. Rev. A 88 042316

    [31]

    Tan Q S, Huang Y, Yin X, Kuang L M, Wang X 2013 Phys. Rev. A 87 032102

    [32]

    Berrada K 2013 Phys. Rev. A 88 035806

    [33]

    He Z, Yao C M 2014 Chin. Phys. B 23 110601

    [34]

    Zheng Q, Ge L, Yao Y, Zhi Q J 2015 Phys. Rev. A 91 033805

    [35]

    Li Y L, Xiao X, Yao Y 2015 Phys. Rev. A 91 052105

    [36]

    Chen Y, Long Z W, He Z, Ji S T 2021 Sci. Rep. 11 21138

    [37]

    Xu L, Cao Y, Li X Q, Yan Y J, Gurvitz S 2014 Phys. Rev. A 90 022108

    [38]

    Xu L, Li X Q 2016 Phys. Rev. A 94 032130

    [39]

    Breuer H P, Petruccione F 2002 The theory of Open Quantum systems ( Oxford, Oxford University Press )

    [40]

    Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [41]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [42]

    Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002

    [43]

    Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173

    [44]

    Zhou J, Wu C J, Zhu M Y, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215505

    [45]

    Zhang Y J, Man Z X, Zou X B, Xia Y J, Guo G C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045502

    [46]

    Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105

    [47]

    Li J G, Zou J, Shao B 2010 Phys. Rev. A 81 062124

    [48]

    Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Eur. Phys. J. D. 57 447

    [49]

    Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt.Phys. 43 185505

    [50]

    He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108

    [51]

    Dittmann J 1999 Journal of Physics A: Mathematical and General 32 2663

    [52]

    Peng J X 2024 Ph. D. Dissertation (Shanghai: East China Normal University ) (in Chinese) [彭家 鑫 2024 博士学位论文 (上海: 华东师范大学)]

    [53]

    Zhong W, Z Sun, Wang X, Nori F 2013 Phys. Rev. A 87 022337

    [54]

    Zhong W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [钟伟 2014 博士 学位论文 (杭州: 浙江大学)]

  • [1] 李岩, 任志红. 多量子比特GHZ态, ${\mathrm{W}}\overline{{\mathrm{W}}} $态, SGT态在单轴旋转模型下的纠缠判定区分. 物理学报, doi: 10.7498/aps.74.20250715
    [2] 李岩, 任志红. 多量子比特${\boldsymbol{W}}{\overline{{\boldsymbol{W}}}} $态在白噪声环境下的纠缠判定与分类. 物理学报, doi: 10.7498/aps.74.20250221
    [3] 孔俊然, 毛铓, 刘焕, 王晨. 非平衡各向异性Dicke模型中的量子热能输运. 物理学报, doi: 10.7498/aps.74.20251007
    [4] 任亚雷, 周涛. 运动参考系中量子Fisher信息. 物理学报, doi: 10.7498/aps.73.20231394
    [5] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, doi: 10.7498/aps.72.20230862
    [6] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, doi: 10.7498/aps.72.20231179
    [7] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, doi: 10.7498/aps.72.20230356
    [8] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, doi: 10.7498/aps.71.20211970
    [9] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, doi: 10.7498/aps.71.20221053
    [10] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, doi: 10.7498/aps.71.20212029
    [11] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, doi: 10.7498/aps.68.20181965
    [12] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, doi: 10.7498/aps.67.20180040
    [13] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, doi: 10.7498/aps.67.20180330
    [14] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象. 物理学报, doi: 10.7498/aps.64.210302
    [15] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, doi: 10.7498/aps.64.220301
    [16] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, doi: 10.7498/aps.63.170302
    [17] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, doi: 10.7498/aps.60.120302
    [18] 陈一新, 上官王佐, 季达人. 多能级原子的量子跳跃与连续量子测量. 物理学报, doi: 10.7498/aps.48.775
    [19] 李吉士, 张思远, 章思俊. 电声子系统磁电现象的量子理论. 物理学报, doi: 10.7498/aps.21.1638
    [20] 张宗燧. 量子系统的Ergodlc定理. 物理学报, doi: 10.7498/aps.14.400
计量
  • 文章访问数:  77
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-14

/

返回文章
返回