搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银粉在高性能银包铜浆料中的作用及其导电机理研究

张先阳 莫丽玢 李鹤然 王光红 刁宏伟 周春兰 王文静 赵雷

引用本文:
Citation:

纳米银粉在高性能银包铜浆料中的作用及其导电机理研究

张先阳, 莫丽玢, 李鹤然, 王光红, 刁宏伟, 周春兰, 王文静, 赵雷

Research on the function and conductive mechanism of nano-silver powder in high-performance silver-coated copper paste

ZHANG Xianyang, MO Libin, LI Heran, WANG Guanghong, DIAO Hongwei, ZHOU Chunlan, WANG Wenjing, ZHAO Lei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 采用高性能银包铜浆料进行金属化电极制备是晶硅异质结(SHJ:Silicon Heterojunction)太阳电池降本增效的有效手段,但受限于银包铜粉的粒径通常在较大的微米量级,银包铜浆料性能仍有待改善。本文通过将纳米银粉引入银包铜浆料中,利用其优异的低温烧结活性来提升浆料的导电性能,并系统地分析了纳米银粉对浆料特性及电池性能的影响机理。研究发现,纳米银粉在浆料固化中因其更强的收缩效应,产生了对大粒径银包铜粉间隙改善的有利影响,降低了浆料体电阻率;但也同时在粉体和SHJ电池接触界面产生了新的孔隙,增大了浆料接触电阻率,由此还导致界面处的有机层相对较厚,降低了SHJ电池的开路电压。纳米银粉可以增强浆料的触变性,使得印刷电极的宽度减小,降低了遮光面积,从而增大了短路电流密度;印刷电极的高度增高,电极横截面积增大,提高了填充因子。最终,在银包铜浆料中纳米银粉添加量为15%时,所得电池转换效率与纯银电极相当,验证了银包铜浆料在降低HJT电池成本方面具备重要潜力。
    In the field of solar cell technology, the conversion efficiency of silicon heterojunction (SHJ) solar cells has reached 27.08%. Meanwhile, perovskite/SHJ tandem solar cells based on this structure have achieved an efficiency of 34.85%, surpassing the 33.7% theoretical limit for single-junction devices. As the industry shifts from single-junction to tandem configurations, SHJ cells—benefiting from their distinctive structure and low-temperature fabrication process—offer superior compatibility with perovskite layers. This positions SHJ technology to play a critical role in the development of perovskite/tandem solar cells.
    The application of high-performance silver-coated copper (Ag@Cu) paste for electrode metallization provides a viable approach to reduce the cost and improve the performance of SHJ cells. However, the micron-scale particle size of Ag@Cu powder (typically several micrometers) limits the packing density of the electrode layer. To address this, nano-silver powder (~100 nm) is commonly introduced as an additive, enhancing both the packed density of the powder and the electrical conductivity through nano-effects. Although many studies focus on isolated aspects such as paste conductivity, a systematic evaluation covering contact resistivity, printed and cured electrode morphology, overall cell performance, and long-term stability remains scarce. Potential adverse effects of nano-silver addition have also been overlooked. Therefore, a thorough investigation into the role of nano-silver in low-temperature Ag@Cu pastes is necessary.
    Highly conductive low-temperature curing pastes typically employ binary or ternary composite powders with well-separated particle sizes to achieve high packing density according to the dense packing theory. In this work, we systematically adjusted the proportions of three conductive powders: micro-sized Ag@Cu (3-5 μm), sub-micron silver (500 nm), and nano-silver (100 nm), to study the effect of nano-silver on key properties of Ag@Cu paste. These include: curing temperature and sintering behavior, microstructure of cured electrodes, interface structure between electrodes and the silicon wafer, electrical resistivity, and the overall conversion efficiency of SHJ solar cells. The aim is to clarify the underlying mechanisms and optimize the nano-silver content.
    This research reveals several significant impacts of nano-silver addition on Ag@Cu paste properties: (1) It markedly reduces the resistivity of the cured electrode. Compared to sub-micron silver, nano-silver facilitates improved lateral conductivity at lower sintering temperatures. (2) It introduces additional pores at the contact interface with the silicon wafer, increasing contact resistivity. A thickened organic layer at the interface also forms, which reduces the open-circuit voltage of the cell. (3) It enhances paste thixotropy, leading to narrower printed electrode lines that reduce shading loss and increase short-circuit current density. Concurrently, it raises electrode height and cross-sectional area, which helps improve the fill factor. (4) With nano-silver content controlled at 15%, the efficiency of SHJ cells matches or approaches that of reference cells with pure silver electrodes, mainly due to enhanced fill factor and short-circuit current density.
    In summary, an optimized amount of nano-silver powder (e.g., 15%) enables simultaneous improvement in electrode conductivity, printability, and opto-electrical performance, yielding SHJ cells with efficiency comparable to those using pure silver electrodes. This demonstrates the potential of Ag@Cu pastes as a cost-effective alternative without compromising performance. Future studies should focus on the long-term reliability of such paste systems and their scalability, supporting the mass adoption of this technology in perovskite/SHJ tandem solar cells.
  • [1]

    Graham E, Fulghum N, Altieri K https://ember-energy.org/app/uploads/2025/04/Report-Global-Electricity-Review-2025.pdf [2025-4-8]

    [2]

    Masson G, Jäger-Waldau A, Kaizuka I, Lindahl J, Donoso J, de L'Epine M 2025 IEEE 53rd Photovoltaic Specialists Conference (PVSC) p0508-0510

    [3]

    Zhao X, Su S, Tian H, Wang W, Zong J 2025 2nd International Symposium on New Energy Technologies and Power Systems (NETPS) p96-100

    [4]

    He M, Zhang M, Li Z, Liu X, Sun K, Liu Z, Hao X 2025 Advanced Materials 2411858

    [5]

    Dong Y, Chen L, Mao H, Ren Y, Yang H 2025 Journal of Materials Science: Materials in Electronics 36 267

    [6]

    Mo L, Guo Z, Wang Z, Yang L, Fang Y, Xin Z, Li X, Chen Y, Cao M, Zhang Q 2019 Nanoscale research letters 14 197

    [7]

    Li W, Wu T, Jiao R, Zhang B P, Li S, Zhou Y, Li L 2015 Colloids and Surfaces A: Physicochemical and Engineering Aspects 466 132

    [8]

    Oh D, Yousuf H, Dhungel S K, Khokhar M Q, Zahid M A, Rabelo M, Park J, Kim Y, Yi J 2022 ECS Journal of Solid State Science and Technology 11 095002

    [9]

    Li Y, Kim H S, Yi J, Kim D, Huh J Y 2018 IEEE Journal of Photovoltaics 8 969

    [10]

    Tang S, Li P, Dong H, Huang Z, Ma Y, Liu W 2023 24th International Conference on Electronic Packaging Technology (ICEPT) p1-5

    [11]

    Wang R C, Lin Y X, Huang M R, Chao C Y 2013 Nanotechnology 24 045601

    [12]

    Woo Y J, Park K H, Park O O, Wang D H 2015 Organic Electronics 16 118

    [13]

    Chen D, Zhao L, Diao H, Zhang W, Wang G, Wang W 2015 Journal of Alloys & Compounds 618 357

    [14]

    Wang Y, Yang D, Wu P, Wang S, Huang Y, Feng J, Wen J, Tian Y 2023 24th International Conference on Electronic Packaging Technology (ICEPT) p1-4

    [15]

    Wang X Q, Gan W P, Xiang F, Li B Y 2019 Journal of Materials Science: Materials in Electronics 30 2829

    [16]

    Schube J, Tutsch L, Fellmeth T, Bivour M, Feldmann F, Hatt T, Maier F, Keding R, Clement F, Glunz S W 2018 IEEE Journal of Photovoltaics 8 1208

    [17]

    Marinkovic M 2013 Ph. D. Dissertation(Bremen:Jacobs University Bremen)

    [18]

    Kim J, Friend R, Cacialli F 1999 Journal of Applied Physics 86 2774

    [19]

    Skriver H L, Rosengaard N 1992 Physical Review B 46 7157

    [20]

    Honsberg C B, Bowden S G https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance[2025-9-30]

    [21]

    Green M A 2016 Applied physics letters 108

    [22]

    Wang J, Wang H, Yang H, Zhang L 2008 Chinese Journal of Power Sources 32 681 (in Chinese) [王军, 王鹤, 杨宏, 张伶 2008 电源技术 32 681]

    [23]

    Xu C, Fieß M, Willenbacher N 2016 IEEE Journal of Photovoltaics 7 129

  • [1] 刘慧桢, 刘蓓, 董家斌, 李建鹏, 曹子修, 刘越, 孟汝涛, 张毅. 不同环境下硫化镉/铜基薄膜异质结退火对太阳电池性能调控. 物理学报, doi: 10.7498/aps.72.20230105
    [2] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计. 物理学报, doi: 10.7498/aps.70.20210674
    [3] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, doi: 10.7498/aps.68.20191042
    [4] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, doi: 10.7498/aps.66.108801
    [5] 刘骐萱, 王永平, 刘文军, 丁士进. 基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究. 物理学报, doi: 10.7498/aps.66.087301
    [6] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, doi: 10.7498/aps.65.138801
    [7] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, doi: 10.7498/aps.65.070201
    [8] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, doi: 10.7498/aps.64.248801
    [9] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 高绒度掺硼氧化锌透明导电薄膜用作非晶硅太阳电池前电极的研究. 物理学报, doi: 10.7498/aps.63.028801
    [10] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, doi: 10.7498/aps.62.197202
    [11] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究. 物理学报, doi: 10.7498/aps.62.037301
    [12] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究. 物理学报, doi: 10.7498/aps.62.158103
    [13] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究. 物理学报, doi: 10.7498/aps.59.7144
    [14] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, doi: 10.7498/aps.58.4992
    [15] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, doi: 10.7498/aps.58.2829
    [16] 李盛涛, 成鹏飞, 杨雁, 张乐. ZnO压敏陶瓷电导研究的新方法. 物理学报, doi: 10.7498/aps.58.2543
    [17] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池. 物理学报, doi: 10.7498/aps.54.2945
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, doi: 10.7498/aps.54.53
    [19] 李 鹏, 刘顺华, 陈光昀. 二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响. 物理学报, doi: 10.7498/aps.54.3332
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, doi: 10.7498/aps.52.217
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-13

/

返回文章
返回