精密测量物理
编者按:
为实现精密测量物理领域 “迎头赶上、适时超越、支撑未来”的战略目标,国家自然科学基金委于2013年启动了“精密测量物理”重大研究计划。该研究计划旨在针对特定的精密测量物理研究对象,以原子分子、光子为主线,构建高稳定度精密测量新体系,探索精密测量物理新概念与新原理,发展更高精度的测量方法与技术,提高基本物理学常数的测量精度,在更高精度上检验基本物理定律的适用范围。
为向广大科学工作者汇报“精密测量物理”重大研究计划执行至今所取得一些进步和成果,借助本专题我们汇选出14篇综述论文。这些论文涵盖了在光频精密测量、基本常数测量、基本物理规律检验和精密测量新体系新方法等方面我国科学家所取得的最新进展。期望通过这个专题能帮助读者了解精密测量物理领域的现状与发展趋势,更期望学术界能进一步关注精密测量物理学科的发展并给予批评、指导。
本专题在《物理学报》编辑部的精心组织下完成,得到了各位论文作者的积极配合,谨此一并致谢!
2018, 67 (16): 160401.
doi: 10.7498/aps.67.20180636
摘要 +
为了统一描述自然界的四种基本相互作用,科学家提出了很多理论模型,其中很多理论认为牛顿反平方定律在近距离下会发生偏离,或存在其他的非牛顿引力作用,而理论的正确与否需要高精度的实验检验.国际上很多研究组在不同间距下采用不同的技术对反平方定律进行了高精度的实验检验,本文重点介绍华中科技大学引力中心采用密度调制法分别在亚毫米与微米范围进行的实验研究进展.在亚毫米范围采用精密扭秤技术,在对牛顿引力进行双补偿、抑制电磁干扰后,结合零实验与非零实验结果,在作用程为70–300 μm区间对Yukawa形式的破缺给出国际上精度最高的限制.在微米范围采用悬臂梁作为弱力传感器,通过测量金球和密度调制吸引质量间水平力的变化来检验非牛顿引力是否存在,实验结果不需进行Casimir力和静电力背景扣除,是此间距下不依赖于Casimir力和静电力理论计算模型的两个结果之一.
2018, 67 (16): 160402.
doi: 10.7498/aps.67.20180621
摘要 +
等效原理是广义相对论的两个基本假设之一,也是爱因斯坦对弱等效原理的推广.目前,大量实验证明弱等效原理在一定的实验精度内是成立的.将引力与标准模型统一起来的新理论都要求弱等效原理破缺,因此更高精度的弱等效原理检验具有重要的科学意义.本文介绍了原子干涉仪的原理,回顾了利用原子干涉仪开展微观粒子弱等效原理检验实验研究的历史和现状,介绍了双组分原子干涉仪检验弱等效原理实验涉及的振动噪声抑制、拉曼光移频与相位噪声抑制、四波双衍射拉曼跃迁原子干涉、信号探测与数据处理等关键问题及研究进展,分析了高精度微观粒子弱等效原理检验研究的发展趋势,介绍了长基线原子干涉仪、空间原子干涉仪、超冷原子源以及纠缠原子源制备等方面的研究动态,展望了微观粒子弱等效原理检验研究的发展前景.
2018, 67 (16): 164202.
doi: 10.7498/aps.67.20180876
摘要 +
近年来,冷原子技术和激光技术促进了高精度光频标的发展,有望在建立时间基准、推动基础研究和满足国家需求等方面发挥重要的作用.本文介绍了中国科学院武汉物理与数学研究所近年来在高准确度钙离子(40Ca+)光频标研究方面的进展:采用新的ULE腔系统,实现了729 nm钟跃迁激光器1–100 s的频率稳定度均优于2×10-15,通过对外场和环境效应的控制及克服,特别是囚禁离子运动效应的抑制,获得单个钙离子光频标的不确定度优于5.5×10-17;通过两台光频标的比对,测得20000 s的稳定度也进入10-17量级;基于高精度钙离子光频标平台,进行了相关精密测量的工作,包括:基于全球定位系统的超高精度远程光频绝对值测量方案,第二次测量了钙离子的光频跃迁绝对值,该测量结果再次被国际时间频率咨询委员会采纳,更新了钙离子的频率推荐值;精确测量了钙离子的钟跃迁魔幻波长,由此提出新型的全光囚禁离子光频标的方法;精密测量了钙离子的亚稳态寿命等参数.以上工作推动了基于冷原子的精密测量工作.
2018, 67 (16): 160601.
doi: 10.7498/aps.67.20180581
摘要 +
质量单位千克是国际单位制7个基本单位中惟一一个仍以实物定义和复现的基本单位.作为一种实物,其量值必然会因为环境因素及使用时的磨损而发生变化.但由于缺少更高一级的参考标准对其进行考察,国际千克原器的真实变化情况无从得知.国际计量委员会建议采用普朗克常数对千克重新定义,号召各个国家开展普朗克常数的精密测量研究工作,并要求至少有三种独立方案提供有效测量数据.自20世纪70年代起,英、美等国采用功率天平方案进行研究,国际阿伏伽德罗常数合作组织则采用了X射线单晶硅密度的方案.为了应对国际单位制的重大变革,2006年中国计量科学研究院提出了用能量天平法测量普朗克常数的新方案,其特点是可避免国外方案中困难的动态测量.2013年原型实验装置研制成功,证实了能量天平方案原理可行.此后,中国计量科学研究院开始了新一代能量天平装置的研制.2017年5月,中国计量科学研究院提交了普朗克常数的测量结果,不确定度为2.4×10-7(k=1),该数据被国际科学数据委员会收入参考数据库.但由于数据的不确定度尚未进入10-8量级,未被用于普朗克常数的定值.目前中国计量科学研究院正对几项主要的不确定度来源进行研究,预计在未来的两年内达可到10-8量级的不确定度.
2018, 67 (16): 160602.
doi: 10.7498/aps.67.20180751
摘要 +
随着科技的进步以及精密测量应用技术的不断提高,超稳微波源的稳定度和噪声水平等技术要求不断提高,应用范围愈加广泛,包括高性能频标研究、网络雷达研制、深空导航系统等方面.基于超稳激光和飞秒光梳的超稳光生微波源是目前频率稳定度最高的微波频率源,相对频率稳定度可达10-16@1 s量级.该装置也是未来频率标准(光频标)推广应用的基础,无论是时间的产生还是绝大多数的精密测量,都需要将光频标的输出激光变换为超稳的基带频率信号后才能够实现.本文介绍了超稳光生微波源技术的发展、现状和应用需求.以国家授时中心研制的国内首套超稳微波频率源技术为主线,介绍了超稳光生微波源的原理和结构以及各组成部分的技术发展情况:超稳激光方面,着重介绍超稳光学腔研究和研制的进展以及Pound-Drever-Hall锁频技术、剩余幅度调制等噪声抑制技术;飞秒光梳方面,着重介绍目前最常用的掺铒光纤光梳系统的激光锁模、频率控制等技术发展;低噪声光电探测方面,着重介绍宽带光电探测噪声抑制技术和激光幅度噪声引起微波相位噪声的抑制技术.最后对光生超稳微波技术进行了总结和展望.
2018, 67 (16): 163202.
doi: 10.7498/aps.67.20180540
摘要 +
介绍了喷泉频标的原理与发展.喷泉频标是一项近20年来发展起来的原子钟技术,它以激光冷却技术为基础,利用该技术实现了冷原子介质的俘获与上抛.冷原子介质在上抛下落过程中首先完成原子态制备,然后两次通过微波谐振腔实现Ramsey作用,在两次作用之间原子经历自由演化,最后原子经过探测区,通过双能级荧光探测法探测原子跃迁概率得到鉴频的Ramsey干涉条纹,并实现频率锁定,其中心条纹的线宽在1 Hz左右.频率稳定度和频率不确定度是喷泉频标的两个重要指标.影响喷泉钟频率稳定度的因素主要有量子投影噪声和电子学噪声,目前喷泉钟的短期稳定度为 (10-13–10-14)τ-1/2,长期稳定度在 10-16–10-17量级.喷泉频标的频率不确定度主要受二阶塞曼频移、黑体辐射频移、冷原子碰撞频移以及与微波相关的频移等的影响.目前喷泉钟的不确定度在小的10-16量级.作为基准频标,喷泉钟的工作介质主要是133Cs,87Rb.国际各大计量机构都研制了喷泉频标,它在各地协调世界时的建立、国际原子时的校准等方面发挥着越来越重要的作用.此外,喷泉频标还用于研究高精度时频基准和时间比对链路、验证基本物理理论等.
2018, 67 (16): 160301.
doi: 10.7498/aps.67.20180788
摘要 +
在室温下,金刚石中的氮-空位(NV)色心具有荧光强度稳定、电子自旋相干时间长以及与生俱来的原子尺寸的特点,是优良的纳米量子传感器.在成像领域中,将各种超分辨成像显微技术应用于NV色心体系,发展出多种高空间纳米分辨率的成像方法.此外,NV色心作为固态量子比特可以通过光学方法对其进行初始化和读取.NV色心电子自旋量子态还可以与电磁场、应力等进行相干耦合.基于这些耦合,科研人员在实验上实现了对相关物理量纳米级空间分辨率的高灵敏表征.目前这些量子传感技术可以应用在新材料、单个蛋白质核自旋、活体神经元等方面的测量中.本综述主要介绍金刚石中NV色心纳米量子传感器件的工作原理、实验实现和优化以及在相关领域的应用.
2018, 67 (16): 160303.
doi: 10.7498/aps.67.20181029
摘要 +
所有经典的双模(两路径)干涉仪的相位测量精度都受限于1/√N(其中N为参与干涉测量的总粒子数),这一极限被称为经典极限或标准量子极限.量子计量学最重要的目标之一是探索如何通过量子纠缠实现超越经典极限的测量精度.双数态是一种能突破经典极限的纠缠态,它由数目相等、不可区分的自旋朝上和朝下(双模)玻色粒子组成.通过光学自发参量下转换或囚禁离子内态的操控手段已实现了不到十个光子或离子的双数态.利用玻色-爱因斯坦凝聚体中原子的自旋混合过程,近年来也能产生多达几千个原子的双数态.但是这样制备的双数态的总粒子数的随机涨落过大,限制了它们的实际应用潜力.最近,我们通过调控原子凝聚体中的量子相变,实现了超过一万个原子的双数态的确定性制备.本文简要综述这一研究进展.
2018, 67 (16): 160603.
doi: 10.7498/aps.67.20181381
摘要 +
万有引力常数G是人类历史上引入的第一个基本物理学常数,其在理论物理、天体物理和地球物理等许多领域中扮演着重要角色.两百多年来,人们共测量出了200多个G值,但G的测量精度仍然是所有物理学常数中最差的,这一现象反映了测G工作本身的复杂性和困难性.本文简要概述了G值测量的意义和测G的历史,并结合自2010年以来国际上新出现的三个高精度测G实验介绍这一领域的研究进展,以及华中科技大学引力实验中心测G工作的最新动态.
2018, 67 (16): 160604.
doi: 10.7498/aps.67.20181097
摘要 +
进入21世纪以来,锶原子光晶格钟经历了快速的发展,系统频移的不确定度指标已经超越现有的秒定义基准铯原子喷泉钟,进入到10-18量级,体现了人类精密测量能力的最高水平,是精密测量物理的热点研究内容.本综述简要介绍了锶原子光晶格钟的发展水平;详细介绍了锶原子光晶格钟的各个组成部分和关键技术、如何进行精密光谱探测和闭环锁定以及各项系统频移的不确定度评估方法和锶原子跃迁绝对频率测量的方法等;最后简要介绍了锶光钟的应用和未来发展趋势.
2018, 67 (16): 163201.
doi: 10.7498/aps.67.20181021
摘要 +
本文实现了可用于锂原子频率精密测量的冷原子系统,获得了大数目的原子样品;利用西西弗斯冷却和速度选择相干布居俘获实现了6Li的冷原子的灰色黏胶冷却,原子的温度被冷却到多普勒冷却极限以下,达到50 μ K;利用光学频率梳,实验上测量了D1线的跃迁频率和超精细分裂,测量结果和理论计算相接近,可以和目前最精确的测量相比较.这些测量为进一步的轻质量原子频率的精密测量、α常数以及核半径的精确标定打下了基础.
2018, 67 (16): 164203.
doi: 10.7498/aps.67.20180914
摘要 +
氦原子是最基本的多电子原子,其精密谱是十分理想的检验多电子量子电动力学计算的平台,同时也是利用原子能级结构测定精细结构常数α的理想体系,还能获得原子核结构信息.本文结合我们团队的工作,综述基于氦原子的少体原子精密光谱研究.其中,主要包括氦原子2 3PJ精细结构分裂,以及2 3S–2 3P跃迁频率测定等研究,并对相关工作的前景进行了展望.
2018, 67 (16): 164204.
doi: 10.7498/aps.67.20180895
摘要 +
物理量的测量与单位标准的统一推动了计量学的发展.量子力学的建立,激光技术的发明以及原子与分子物理学的发展,在原理与技术上进一步刷新了计量学的研究内涵,特别是激光干涉与原子频标技术的发展,引起了计量学革命性的飞跃.基于激光干涉的引力波测量、激光陀螺仪,基于原子干涉的原子钟、原子陀螺仪等精密测量技术相继诞生,一个以量子物理为基础,探索与开拓物理量精密测量方法与技术的新的科学分支——量子计量学(Quantum Metrology)已然兴起.干涉是计量学中最常用的相位测量方法.量子干涉技术,其相位测量精度能够突破标准量子极限的限制,是量子计量学与量子测量技术的核心研究内容.本文重点介绍近几年我们在量子干涉方面所取得的新开拓与新发展,主要内容包括基于原子系综中四波混频过程的SU (1,1)型光量子关联干涉仪和基于原子系综中拉曼散射过程的光-原子混合干涉仪.
2018, 67 (16): 167601.
doi: 10.7498/aps.67.20181084
摘要 +
磁是一种重要的物理现象,对其进行精密测量推动了许多科技领域的发展.各类测磁技术,包括霍尔传感器、超导量子干涉仪、自旋磁共振等,都致力于提升空间分辨率和灵敏度.近年来,金刚石中的氮-空位色心广受关注.这一固态单自旋体系具有许多优点,例如易于初始化和读出、可操控、具有较长相干时间等,这使得它不仅在量子信息、量子计算等领域崭露头角,而且在量子精密测量上显现出巨大的应用前景.基于氮-空位色心,利用动力学解耦、关联谱等技术,已实现若干高灵敏度、高分辨率的微观磁共振实验,其中包括纳米尺度乃至单分子、单自旋的核磁共振和电子顺磁共振.氮-空位色心也可以用于微波和射频信号的精密测量.本文对围绕上述主题开展的一系列研究工作进行综述.