搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6Li原子跃迁频率和超精细分裂的精密测量

武跃龙 李睿 芮扬 姜海峰 武海斌

引用本文:
Citation:

6Li原子跃迁频率和超精细分裂的精密测量

武跃龙, 李睿, 芮扬, 姜海峰, 武海斌

Precise measurement of 6Li transition frequencies and hyperfine splitting

Wu Yue-Long, Li Rui, Rui Yang, Jiang Hai-Feng, Wu Hai-Bin
PDF
导出引用
  • 本文实现了可用于锂原子频率精密测量的冷原子系统,获得了大数目的原子样品;利用西西弗斯冷却和速度选择相干布居俘获实现了6Li的冷原子的灰色黏胶冷却,原子的温度被冷却到多普勒冷却极限以下,达到50 μ K;利用光学频率梳,实验上测量了D1线的跃迁频率和超精细分裂,测量结果和理论计算相接近,可以和目前最精确的测量相比较.这些测量为进一步的轻质量原子频率的精密测量、α常数以及核半径的精确标定打下了基础.
    In this paper, we report a precision measurement of hyperfine splitting and absolute frequency of D1 line in cold 6Li atoms. The gray molasses is realized in the experiment and the tempreature is cooled to about 50 μK, which is lower than the Doppler cooling limit, 140 μK. By use of an optical comb, the absolute frequencies and corresponding hyperfine splitting are measured. We obtain frequencies of 446789503.080(35) MHz, 446789529.198(36) MHz, 446789731.316(50) MHz and 446789757.476(29) MHz for the D1 line. The results are in reasonable agreement with the theoretical calculations and consistent with earlier measurements. They could provide an important foundation for future frequency measurement, α constant and nuclear radius.
      通信作者: 武海斌, hbwu@phy.ecnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304201)、国家自然科学基金(批准号:11734008,11374101,91536112,116214040)、上海市优秀学术带头人(批准号:17XD1401500)和上海市基础研究重大研究计划(批准号:17JC1400500).
      Corresponding author: Wu Hai-Bin, hbwu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304201), the National Natural Science Foundation of China (Grant Nos. 11734008, 11374101, 91536112, 116214040), Shanghai Outstanding Academic Leader, China (Grant No. 17XD1401500), and Shanghai Major Research Projects of Basic Research, China (Grant No. 17JC1400500).
    [1]

    Yan Z, Drake G W F 2002 Phys. Rev. A 66 042504

    [2]

    Yan Z, Norterhauser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

    [3]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510

    [4]

    Puchalski M, Moro A M, Pachucki K 2006 Phys. Rev. Lett. 97 133001

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Khl Th, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002

    [6]

    Noble G, Schultz B, Ming H, Wijingaarden W 2006 Phys. Rev. A 74 012502

    [7]

    Pieper S, Pandharipande V, Wiringa R, Carlson J 2001 Phys. Rev. C 64 014001

    [8]

    Puchalski M, Pachucki K 2014 Phys. Rev. Lett. 113 073004

    [9]

    Borg K C, Eck T G, Wider H 1967 Phys. Rev. 153 91

    [10]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [11]

    Radziemski L J, Engleman R, Brault J W 1995 Phys. Rev. A 52 4462

    [12]

    Sansonetti C J, Richou B, Engleman R, Radziemski L J 1995 Phys. Rev. A 52 2682

    [13]

    Das D, Natarajan V 2007 Phys. Rev. A 75 052508

    [14]

    Sansonetti C, Simien C, Gillaspy J, Tan J, Brewer S, Brown R, Wu S J, Porto J 2001 Phys. Rev. Lett. 107 023001

    [15]

    Grynberg G, Courtois J Y 1994 EPL 27 41

    [16]

    Grier A, Ferrier-Barbut I, Rem B, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411

    [17]

    Liu Y, Lin J, Huang G, Guo Y, Duan C 2001 J. Opt. Soc. Am. B 18 666

    [18]

    Walls J, Ashby R, Clarke J J, Lu B, Wijngaarden W A 2003 Eur. Phys. J. D 22 159

    [19]

    Das D, Natarajan V 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035001

    [20]

    Beckmann A, Böklen K D, Elke D 1974 Z. Phys. 270 173

    [21]

    Noble G A, Schultz B E, Ming H, Wijngaarden W A 2006 Phys. Rev. A 74 012502

    [22]

    Lien Y H, Lo K J, Chen H C, Chen J R, Tian J Y, Shy J T, Liu Y W 2011 Phys. Rev. A 84 042511

    [23]

    Chang H, Myneni K, Smith D D, Liaghati-Mobarhan H R 2017 Rev. Sci. Instrum. 88 063101

  • [1]

    Yan Z, Drake G W F 2002 Phys. Rev. A 66 042504

    [2]

    Yan Z, Norterhauser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

    [3]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510

    [4]

    Puchalski M, Moro A M, Pachucki K 2006 Phys. Rev. Lett. 97 133001

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Khl Th, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002

    [6]

    Noble G, Schultz B, Ming H, Wijingaarden W 2006 Phys. Rev. A 74 012502

    [7]

    Pieper S, Pandharipande V, Wiringa R, Carlson J 2001 Phys. Rev. C 64 014001

    [8]

    Puchalski M, Pachucki K 2014 Phys. Rev. Lett. 113 073004

    [9]

    Borg K C, Eck T G, Wider H 1967 Phys. Rev. 153 91

    [10]

    Arimondo E, Inguscio M, Violino P 1977 Rev. Mod. Phys. 49 31

    [11]

    Radziemski L J, Engleman R, Brault J W 1995 Phys. Rev. A 52 4462

    [12]

    Sansonetti C J, Richou B, Engleman R, Radziemski L J 1995 Phys. Rev. A 52 2682

    [13]

    Das D, Natarajan V 2007 Phys. Rev. A 75 052508

    [14]

    Sansonetti C, Simien C, Gillaspy J, Tan J, Brewer S, Brown R, Wu S J, Porto J 2001 Phys. Rev. Lett. 107 023001

    [15]

    Grynberg G, Courtois J Y 1994 EPL 27 41

    [16]

    Grier A, Ferrier-Barbut I, Rem B, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411

    [17]

    Liu Y, Lin J, Huang G, Guo Y, Duan C 2001 J. Opt. Soc. Am. B 18 666

    [18]

    Walls J, Ashby R, Clarke J J, Lu B, Wijngaarden W A 2003 Eur. Phys. J. D 22 159

    [19]

    Das D, Natarajan V 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035001

    [20]

    Beckmann A, Böklen K D, Elke D 1974 Z. Phys. 270 173

    [21]

    Noble G A, Schultz B E, Ming H, Wijngaarden W A 2006 Phys. Rev. A 74 012502

    [22]

    Lien Y H, Lo K J, Chen H C, Chen J R, Tian J Y, Shy J T, Liu Y W 2011 Phys. Rev. A 84 042511

    [23]

    Chang H, Myneni K, Smith D D, Liaghati-Mobarhan H R 2017 Rev. Sci. Instrum. 88 063101

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [3] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [4] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [5] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [6] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [7] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [8] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [9] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [10] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [11] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [12] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [13] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [14] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [15] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [16] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [17] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [18] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [19] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  8366
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-26
  • 修回日期:  2018-07-04
  • 刊出日期:  2019-08-20

/

返回文章
返回