Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3

Guo Hong-Wei Liu Ran Wang Ling-Rui Cui Jin-Xing Song Bo Wang Kai Liu Bing-Bing Zou Bo

Citation:

High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3

Guo Hong-Wei, Liu Ran, Wang Ling-Rui, Cui Jin-Xing, Song Bo, Wang Kai, Liu Bing-Bing, Zou Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recent advance in highly efficient solar cells based on organic-inorganic hybrid perovskites has triggered intense research efforts to ascertain the fundamental properties of these materials. In this work, we utilize diamond anvil cell to investigate the pressure-induced structural and optical transformations in methylammonium lead iodide (CH3NH3PbI3) at pressures ranging from atmospheric pressure to 7 GPa at room temperature. The synchrotron X-ray diffraction experiment shows that the sample transforms from tetragonal (space group I4cm) to orthorhombic (space group Imm2) phase at 0.3 GPa and amorphizes above 4 GPa. Pressure dependence of the unit cell volume of CH3NH3PbI3 shows that the unit cell volume undergoes a sudden reduction at 0.3 GPa, which can prove the observed phase transition. We provide the high-pressure optical micrographs obtained from a diamond anvil cell. Upon compression, we can visually observe that the opaque black sample gradually transforms into a transparent red one above 4 GPa. We analyze the pressure dependence of the band gap energy based on the optical absorption and photoluminescence (PL) results. As pressure increases up to 0.25 GPa, the absorption edge and PL peak move to the longer wavelength region of 9 nm. However, abrupt blueshifts of the absorption edge and PL peak occur at 0.3 GPa, followed by a gradual blueshift up to 1 GPa, these phenomena correspond to the previously observed phase transitions. Phase transition increases the band gap energy of CH3NH3PbI3 as a result of reductions in symmetry and tilting of the[PbI6]4- octahedral. Upon further compression, the sample exhibits pressure-induced amorphization at about 4 GPa, which significantly affects its optical properties. Further high pressure Raman and infrared spectroscopy experiments illustrate the high pressure behavior of organic CH3NH3+ cations. Owing to the presence of hydrogen bonding between organic cations and the inorganic framework, all of the bending and rocking modes of CH3 and NH3 groups are gradually red-shifted with increasing pressure. The transition of NH stretching mode from blueshift to redshift as a result of the attractive interactions between hydrogen atoms and iodine atoms is gradually strengthened. Moreover, all the observed changes are fully reversible when the pressure is completely released. In situ high pressure studies provide essential information about the intrinsic properties and stabilities of organic-inorganic hybrid perovskites, which significantly affect the performances of perovskite solar cells.
      Corresponding author: Wang Kai, kaiwang@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91227202, 21673100, 11204101) and the Changbai Mountain Scholars Program, China (Grant No. 2013007).
    [1]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese)[王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖2013物理学报62 058801]

    [2]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)[於黄忠2013物理学报62 027201]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese)[韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮2013物理学报62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476

    [7]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [9]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [10]

    Pathak S, Sakai N, Rivarola F W R, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffit J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J 2015 Chem. Mater. 27 8066

    [11]

    Hao F, Stoumpos C C, Cao D Y H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S Z 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Dai J, Zheng H G, Zhu C, Lu J F, Xu C X 2016 J. Mater. Chem. C 4 4408

    [14]

    Wozny S, Yang M J, Nardes A M, Mercado C C, Ferrere S, Reese M O, Zhou W L, Zhu K 2015 Chem. Mater. 27 4814

    [15]

    McMillan P F 2002 Nat. Mater. 1 19

    [16]

    Demazeau G 2002 J. Phys.:Condens. Matter 14 11031

    [17]

    Wang Y G, Lu X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S, Zhao Y S 2015 J. Am. Chem. Soc. 137 11144

    [18]

    Swainson I P, Tucker M G, Wilson D J, Winkler B, Milman V 2007 Chem. Mater. 19 2401

    [19]

    Wang L R, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [20]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Naeeruddin M K, Grätzel M, Angelis F D 2014 Nano Lett. 14 3608

    [21]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [22]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Chem. Chem. Phys. 16 19984

    [23]

    Park N 2013 J. Phys. Chem. Lett. 4 2423

    [24]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015物理学报64 038404]

    [25]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [26]

    Baikie T, Fang Y, Kadro J M 2013 J. Mater. Chem. A 1 5628

    [27]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373

    [28]

    Jiang S J, Fang Y N, Li R P, Xiao H, Crowley J, Wang C Y, White T J, GoddardIII W A, Wang Z W, Baikie T, Fang J Y 2016 Angew. Chem. Int. Ed. Engl. 55 6540

    [29]

    Ou T J, Yan J Y, Xiao C H, Shen W S, Liu C L, Liu X Z, Han Y H, Ma Y M, Gao C X 2016 Nanoscale 8 11426

    [30]

    Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, Karunadasa H I 2016 ACS Cent Sci. 2 201

    [31]

    Szafranski M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458

    [32]

    Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901

    [33]

    Hammersley A P, Svensson S O, HanflandM, Fitch A N, Hausermann D 1996 High Pressure Res. 14 235

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103

    [35]

    Foley B J, Marlowe D L, Sun K, Saidi W A, Scudiero L, Gupta M C, Choi J J 2015 Appl. Phys. Lett. 106 243904

    [36]

    Gottesman R, Gouda L, Kalanoor B S, Haltzi E, Tirosh S, Rosh-Hodesh E, Tischler Y, Zaban A 2015 J. Phys. Chem. Lett. 6 2332

    [37]

    Carpentier P, Lefebvre J, Jakubas R 1992 J. Phys.:Condens. Matter 4 2985

    [38]

    Lee J H, Bristowe N C, Bristowe P D, Cheetham A K 2015 Chem. Commun. 51 6434

    [39]

    Wang K, Liu J, Yang K, Liu B, Zou B 2014 J. Phys. Chem. C 118 18640

  • [1]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese)[王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖2013物理学报62 058801]

    [2]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)[於黄忠2013物理学报62 027201]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese)[韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮2013物理学报62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476

    [7]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [8]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [9]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [10]

    Pathak S, Sakai N, Rivarola F W R, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffit J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J 2015 Chem. Mater. 27 8066

    [11]

    Hao F, Stoumpos C C, Cao D Y H, Chang R P H, Kanatzidis M G 2014 Nat. Photon. 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S Z 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Dai J, Zheng H G, Zhu C, Lu J F, Xu C X 2016 J. Mater. Chem. C 4 4408

    [14]

    Wozny S, Yang M J, Nardes A M, Mercado C C, Ferrere S, Reese M O, Zhou W L, Zhu K 2015 Chem. Mater. 27 4814

    [15]

    McMillan P F 2002 Nat. Mater. 1 19

    [16]

    Demazeau G 2002 J. Phys.:Condens. Matter 14 11031

    [17]

    Wang Y G, Lu X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S, Zhao Y S 2015 J. Am. Chem. Soc. 137 11144

    [18]

    Swainson I P, Tucker M G, Wilson D J, Winkler B, Milman V 2007 Chem. Mater. 19 2401

    [19]

    Wang L R, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [20]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Naeeruddin M K, Grätzel M, Angelis F D 2014 Nano Lett. 14 3608

    [21]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [22]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Chem. Chem. Phys. 16 19984

    [23]

    Park N 2013 J. Phys. Chem. Lett. 4 2423

    [24]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元2015物理学报64 038404]

    [25]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [26]

    Baikie T, Fang Y, Kadro J M 2013 J. Mater. Chem. A 1 5628

    [27]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 6373

    [28]

    Jiang S J, Fang Y N, Li R P, Xiao H, Crowley J, Wang C Y, White T J, GoddardIII W A, Wang Z W, Baikie T, Fang J Y 2016 Angew. Chem. Int. Ed. Engl. 55 6540

    [29]

    Ou T J, Yan J Y, Xiao C H, Shen W S, Liu C L, Liu X Z, Han Y H, Ma Y M, Gao C X 2016 Nanoscale 8 11426

    [30]

    Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, Karunadasa H I 2016 ACS Cent Sci. 2 201

    [31]

    Szafranski M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458

    [32]

    Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901

    [33]

    Hammersley A P, Svensson S O, HanflandM, Fitch A N, Hausermann D 1996 High Pressure Res. 14 235

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103

    [35]

    Foley B J, Marlowe D L, Sun K, Saidi W A, Scudiero L, Gupta M C, Choi J J 2015 Appl. Phys. Lett. 106 243904

    [36]

    Gottesman R, Gouda L, Kalanoor B S, Haltzi E, Tirosh S, Rosh-Hodesh E, Tischler Y, Zaban A 2015 J. Phys. Chem. Lett. 6 2332

    [37]

    Carpentier P, Lefebvre J, Jakubas R 1992 J. Phys.:Condens. Matter 4 2985

    [38]

    Lee J H, Bristowe N C, Bristowe P D, Cheetham A K 2015 Chem. Commun. 51 6434

    [39]

    Wang K, Liu J, Yang K, Liu B, Zou B 2014 J. Phys. Chem. C 118 18640

  • [1] Xiao Wen-Yue, Dong Xiao-Shuo, Mamatrishat Mamat, Niu Na-Na, Li Guo-Dong, Zhu Ze-Tao, Bi Jie-Hao. Effects of different compositional ratios on physical structure and optical properties of thin films during alloying of Zn2+ and TiO2. Acta Physica Sinica, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] Wei Wei, Guan Feng, Fang Xin. Integrated vibration absorption and isolation design method for metamaterial beams based on bandgap wave-insulating vibration isolatior. Acta Physica Sinica, 2024, 73(22): 1-13. doi: 10.7498/aps.73.20241135
    [3] Duan Tong-Chuan, Yan Shao-Jian, Zhao Yan, Sun Ting-Yu, Li Yang-Mei, Zhu Zhi. Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Physica Sinica, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [4] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng. Investigation of hydrogen bond vibrations of ice. Acta Physica Sinica, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [6] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [7] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [8] Ding Kun, Wu Xue-Fei, Dou Xiu-Ming, Sun Bao-Quan. In situ tuning hydrostatic pressure at low temperature using electrically driven diamond anvil cell. Acta Physica Sinica, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [9] Hu Xiao-Ying, Guo Xiao-Xia, Hu Wen-Tao, Huhe Mandula, Zheng Xiao-Xia, Jing Li-Li. Spin-wave band gaps created by rotating square rods in triangular lattice magnonic crystals. Acta Physica Sinica, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [10] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [11] Wang Xiao-Wu, Xu Hai-Hong. Study of the solid-solid phase change in polyalcohol binary systems. Acta Physica Sinica, 2014, 63(13): 136501. doi: 10.7498/aps.63.136501
    [12] Liu Bo-Fei, Bai Li-Sha, Zhang De-Kun, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan. Effect of a-Si:H interface buffer layer on the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [13] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [14] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [15] Wang Xiao-Wu, Xu Hai-Hong. Mechanism of polyalcohol solid—solid phase change. Acta Physica Sinica, 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [16] Wu Bao-Jia, Han Yong-Hao, Peng Gang, Jin Feng-Xi, Gu Guang-Rui, Gao Chun-Xiao. The effect of variation in pressure-induced electrode position on the measurement accuracy of sample conductivity in a diamond anvil cell(Retracted Article). Acta Physica Sinica, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [17] Wang Li-Yong, Cao Yong-Jun. Effects of arrangement of scatterers on band gaps of two-dimesional magnonic crystals. Acta Physica Sinica, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [18] Xu Zhen-Long, Wu Fu-Gen. Photonic band gaps of two-dimensional phononic crystals tuned and optimized by modifying the configuration. Acta Physica Sinica, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [19] Mu Zhong-Fei, Wu Fu-Gen, Zhang Xin, Zhong Hui-Lin. Effect of translation group symmetry on phononic band gaps studied by supercell calculation. Acta Physica Sinica, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [20] Zhao Ming-Wen, Xia Yue-Yuan, Ma Yu-Chen, Liu Xiang-Dong, Ying Min-Ju. . Acta Physica Sinica, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
Metrics
  • Abstract views:  8957
  • PDF Downloads:  939
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2016
  • Accepted Date:  09 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回