Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics

Li Shu-Ping Zhang Zhi-Li Fu Kai Yu Guo-Hao Cai Yong Zhang Bao-Shun

Citation:

High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics

Li Shu-Ping, Zhang Zhi-Li, Fu Kai, Yu Guo-Hao, Cai Yong, Zhang Bao-Shun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gallium nitride (GaN)-based high electron mobility transistor (HEMT) power devices have demonstrated great potential applications due to high current density, high switching speed, and low ON-resistance in comparison to the established silicon (Si)-based semiconductor devices. These superior characteristics make GaN HEMT a promising candidate for next-generation power converters. Many of the early GaN HEMTs are devices with Schottky gate, which suffer a high gate leakage and a small gate swing. By inserting an insulator under gate metal, the MIS-HEMT is highly preferred over the Schottky-gate HEMT for high-voltage power switche, owing to the suppressed gate leakage and enlarged gate swing. However, the insertion of the gate dielectric creates an additional dielectric/(Al) GaN interface that presents some great challenges to AlGaN/GaN MIS-HEMT, such as the threshold voltage (Vth) hysteresis, current collapse and the reliability of the devices. It has been reported that the poor-quality native oxide (GaOx) is detrimental to the dielectric/(Al) GaN interface quality that accounted for the Vth instability issue in the GaN based device. Meanwhile, it has been proved that in-situ plasma pretreatment is capable of removing the surface native oxide. On the other hand, low power chemical vapor deposition (LPCVD)-Si3N4 with free of plasma-induced damage, high film quality, and high thermal stability, shows great potential applications and advantages as a choice for the GaN MIS-HEMTs gate dielectric and the passivation layer. In this work, an in-situ pre-deposition plasma nitridation process is adopted to remove the native oxide and reduce surface dangling bonds prior to LPCVD-Si3N4 deposition. The LPCVD-Si3N4/GaN/AlGaN/GaN MIS-HEMT with a high-quality LPCVD-Si3N4/GaN interface is demonstrated. The fabricated MIS-HEMT exhibits a very-low Vth hysteresis of 186 mV at VG-sweep=(-30 V, +24 V), a high breakdown voltage of 881 V, with the substrate grounded. The hysteresis of our device at a higher positive end of gate sweep voltage (VG +20 V) is the best to our knowledge. Switched off after an off-state VDS stress of 400 V, the device has a dynamic on-resistance Ron only 36% larger than the static Ron.
      Corresponding author: Zhang Bao-Shun, Bszhang2006@sinano.ac.cn
    • Funds: Project supported by the Key Technologies Support Program of Jiangsu Province, China (Grant No. BE2013002-2), The National Key Research and Development Program of China (Grant No. 2016YFC0801203), the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2016084), the National Natural Science Foundation of China (Grant No. 11404372), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2013YQ470767).
    [1]

    Yuan S, Duan B X, Yuan X N, Ma J C, Li C L, Cao Z, Guo H J, Yang Y T 2015 Acta Phys. Sin. 64 237302 (in Chinese)[袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂 2015 物理学报 64 237302]

    [2]

    Hua M, Liu C, Yang S, Liu S, Fu K, Dong Z, Cai Y, Zhang B, Chen K J 2015 IEEE Electron Dev. Lett. 36 448

    [3]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electron Dev. Lett. 34 1497

    [4]

    Xin T, Lu Y J, Gu G D, Wang L, Dun S B, Song X B, Guo H Y, Yin J Y, Cai S J, Feng Z H 2015 J. Semicond. 36 074008

    [5]

    Hsieh T E, Chang E Y, Song Y Z, Lin Y C, Wang H C, Liu S C, Salahuddin S, Hu C C 2014 IEEE Electron Dev. Lett. 35 732

    [6]

    Choi W, Ryu H, Jeon N, Lee M, Cha H Y, Seo K S 2014 IEEE Electron Dev. Lett. 35 30

    [7]

    Chakroun A, Maher H, Al Alam E, Souifi A, Aimez V, Ares R, Jaouad A 2014 IEEE Electron Dev. Lett. 35 318

    [8]

    Liu S C, Chen B Y, Lin Y C, Hsieh T E, Wang H C, Chang E Y 2014 IEEE Electron Dev. Lett. 35 1001

    [9]

    Zhang Z L, Qin S J, Fu K, Yu G H, Li W Y, Zhang X D, Sun S C, Song L, Li S M, Hao R H, Fan Y M, Sun Q, Pan G B, Cai Y, Zhang B S 2016 Appl. Phys. Express 9 084102

    [10]

    Zhang Z L, Yu G H, Zhang X D, Deng X G, Li S M, Fan Y M, Sun S C, Song L, Tan S X, Wu D D, Li W Y, Huang W, Fu K, Cai Y, Sun Q, Zhang B S 2016 IEEE Trans. Electron Dev. 63 731

    [11]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, and Yang L A 2009 Chin. Phys. B 18 3014

    [12]

    Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Dev. Lett. 26 225

    [13]

    Huang S, Jiang Q M, Yang S, Zhou C H, Chen K J 2012 IEEE Electron Dev. Lett. 33 516

    [14]

    Reiner M, Lagger P, Prechtl G, Steinschifter P, et al. 2015 IEEE International Electron Devices Meeting Washington, Dec. 7-9 2015, p35.5.1

    [15]

    Liu S, Yu G H, Fu K, Tan S X, Zhang Z L, Zeng C H, Hou K Y, Huang W, Cai Y, Zhang B S, Yuan J S 2014 Electron. Lett. 50 1322

    [16]

    Kanamura M, Ohki T, Ozaki S, Nishimori M, Tomabechi S, Kotani J, Miyajima T, Nakamura N, Okamoto N, Kikkawa T 2013 Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on Kanazawa, May 26-30, 2013, pp411-414

    [17]

    Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 855

    [18]

    Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449

    [19]

    Wu T L, Franco J, Marcon D, de Jaeger B, Bakeroot B, Stoffels S, van Hove M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 1853

    [20]

    Huang S, Yang S, Roberts J, Chen K J 2011 Jpn. J. Appl. Phys. 50 0202

    [21]

    Polyakov A Y, Smirnov N B, Govorkov A V, Markov A V, Dabiran A M, Wowchak A M, Osinsky A V, Cui B, Chow P P, Pearton S J 2007 Appl. Phys. Lett. 91 232116

  • [1]

    Yuan S, Duan B X, Yuan X N, Ma J C, Li C L, Cao Z, Guo H J, Yang Y T 2015 Acta Phys. Sin. 64 237302 (in Chinese)[袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂 2015 物理学报 64 237302]

    [2]

    Hua M, Liu C, Yang S, Liu S, Fu K, Dong Z, Cai Y, Zhang B, Chen K J 2015 IEEE Electron Dev. Lett. 36 448

    [3]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electron Dev. Lett. 34 1497

    [4]

    Xin T, Lu Y J, Gu G D, Wang L, Dun S B, Song X B, Guo H Y, Yin J Y, Cai S J, Feng Z H 2015 J. Semicond. 36 074008

    [5]

    Hsieh T E, Chang E Y, Song Y Z, Lin Y C, Wang H C, Liu S C, Salahuddin S, Hu C C 2014 IEEE Electron Dev. Lett. 35 732

    [6]

    Choi W, Ryu H, Jeon N, Lee M, Cha H Y, Seo K S 2014 IEEE Electron Dev. Lett. 35 30

    [7]

    Chakroun A, Maher H, Al Alam E, Souifi A, Aimez V, Ares R, Jaouad A 2014 IEEE Electron Dev. Lett. 35 318

    [8]

    Liu S C, Chen B Y, Lin Y C, Hsieh T E, Wang H C, Chang E Y 2014 IEEE Electron Dev. Lett. 35 1001

    [9]

    Zhang Z L, Qin S J, Fu K, Yu G H, Li W Y, Zhang X D, Sun S C, Song L, Li S M, Hao R H, Fan Y M, Sun Q, Pan G B, Cai Y, Zhang B S 2016 Appl. Phys. Express 9 084102

    [10]

    Zhang Z L, Yu G H, Zhang X D, Deng X G, Li S M, Fan Y M, Sun S C, Song L, Tan S X, Wu D D, Li W Y, Huang W, Fu K, Cai Y, Sun Q, Zhang B S 2016 IEEE Trans. Electron Dev. 63 731

    [11]

    Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y, and Yang L A 2009 Chin. Phys. B 18 3014

    [12]

    Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Dev. Lett. 26 225

    [13]

    Huang S, Jiang Q M, Yang S, Zhou C H, Chen K J 2012 IEEE Electron Dev. Lett. 33 516

    [14]

    Reiner M, Lagger P, Prechtl G, Steinschifter P, et al. 2015 IEEE International Electron Devices Meeting Washington, Dec. 7-9 2015, p35.5.1

    [15]

    Liu S, Yu G H, Fu K, Tan S X, Zhang Z L, Zeng C H, Hou K Y, Huang W, Cai Y, Zhang B S, Yuan J S 2014 Electron. Lett. 50 1322

    [16]

    Kanamura M, Ohki T, Ozaki S, Nishimori M, Tomabechi S, Kotani J, Miyajima T, Nakamura N, Okamoto N, Kikkawa T 2013 Power Semiconductor Devices and ICs (ISPSD), 2013 25th International Symposium on Kanazawa, May 26-30, 2013, pp411-414

    [17]

    Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 855

    [18]

    Lanford W B, Tanaka T, Otoki Y, Adesida I 2005 Electron. Lett. 41 449

    [19]

    Wu T L, Franco J, Marcon D, de Jaeger B, Bakeroot B, Stoffels S, van Hove M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 1853

    [20]

    Huang S, Yang S, Roberts J, Chen K J 2011 Jpn. J. Appl. Phys. 50 0202

    [21]

    Polyakov A Y, Smirnov N B, Govorkov A V, Markov A V, Dabiran A M, Wowchak A M, Osinsky A V, Cui B, Chow P P, Pearton S J 2007 Appl. Phys. Lett. 91 232116

  • [1] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [2] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [3] Yu Chen-Hui, Luo Xiang-Dong, Zhou Wen-Zheng, Luo Qing-Zhou, Liu Pei-Sheng. Investigation on the current collapse effect of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. Acta Physica Sinica, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [4] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [5] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [6] Zhang Jin-Cheng, Mao Wei, Liu Hong-Xia, Wang Chong, Zhang Jin-Feng, Hao Yue, Yang Lin-An, Xu Sheng-Rui, Bi Zhi-Wei, Zhou Zhou, Yang Ling, Wang Hao, Yang Cui, Ma Xiao-Hua. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors. Acta Physica Sinica, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [7] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [8] Li Yu-Jie, Xie Kai, Xu Jing, Li Xiao-Dong, Han Yu. Fabrication of silicon inverse opal photonic crystal with a complete photonic band gap in mid infrared range and its optical properties. Acta Physica Sinica, 2010, 59(2): 1082-1087. doi: 10.7498/aps.59.1082
    [9] Cheng Ping, Zhang Yu-Ming, Guo Hui, Zhang Yi-Men, Liao Yu-Long. ESR characteristics of high-quality semi-insulating 4H-SiC crystal prepared by LPCVD. Acta Physica Sinica, 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [10] Lin Ruo-Bing, Wang Xin-Juan, Feng Qian, Wang Chong, Zhang Jin-Cheng, Hao Yue. Study on mechanism of AlGaN/GaN high electron mobility transistors by high temperature Schottky annealing. Acta Physica Sinica, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [11] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [12] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [13] Ye Fan, Cai Xing-Min, Wang Xiao-Ming, Zhao Jian-Guo, Xie Er-Qing. Low pressure chemical vapor deposition synthesis of InN nanowires and their field electron emission. Acta Physica Sinica, 2007, 56(4): 2342-2346. doi: 10.7498/aps.56.2342
    [14] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [15] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [16] Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun, Gong Min. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [17] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [18] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] LIU ZU-LI, ZHU DA-QI, SONG WEN-DONG, CHEN JUN-FANG. A MASS TRANSFER MODEL FOR THE PLASMA DEPOSITION PROCESS IN AXIAL-FLOW REACTOR. Acta Physica Sinica, 1992, 41(4): 617-622. doi: 10.7498/aps.41.617
    [20] ZHANG FANG-QING, ZHANG YA-FEI, YANG YING-HU, LI JING-QI, CHEN GUANG-HUA, JIANG XIANG-LIU. PREPARATION OF DIAMOND FILMS BY DC ARC DISCHARGE AND IN SITU MEASUREMENTS OF THE PLASMA BY OPTICAL EMISSION SPECTRA. Acta Physica Sinica, 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
Metrics
  • Abstract views:  5875
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2017
  • Accepted Date:  10 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回