Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle

Niu Shu-Tong Zhou Wang Pan Peng Zhu Bing-Hui Song Han-Yu Shao Jian-Xiong Chen Xi-Meng

Citation:

Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle

Niu Shu-Tong, Zhou Wang, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Shao Jian-Xiong, Chen Xi-Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nanocapillaries in various materials have received considerable attention due to the rapid growth of the nanotechnology.Recent studies have focused on the transmission of ions through the nanocapillary.The pioneer work,the transmission of 3-keV Ne7+ through polyethylene terephthalate nanocapillaries based on guiding effect has been reported by Stolterfoht et al.(2002 Phys.Rev.Lett.88 133201),indicating that the selforganized charge patches on the capillary walls,which inhibits close contact between the ions and the inner capillary walls,deflecting the trajectories of ions,and thus the ions transmit along the direction of the capillary axis.For the high-energy region (E/Q > 1 MV),Hasegawa et al.(2011 J.Appl.Phys.110 044913) measured the outgoing angle and energy distribution of 2 MeV H+ ions transmitted through a tapered glass capillary.The results indicated that the main transport mechanism of the MeV ions in a tapered glass capillary is the multiple random inelastic collisions below the surface.In the medium-energy region (E/Q from dozens of kV to hundreds of kV),Zhou et al.(2016 Acta Phys.Sin.65 103401) measured the transmission features of the 100-keV protons transmitted through a polycarbonate (PC) membrane at a tilt angle of+1°,the transmitted particles were located around the direction along the incident beam,not along the capillary axis,the transport mechanism of the 100-keV protons in the nanocapillary is the charge-patch-assisted collective scatterings on the surface.With the nanocapillary membranes at different tilt angles,the transverse momentum of the incident ions are different.What is the transmission mechanism of the ions in nanocapillary membranes at different tilt angels? In the present study,we measure the time evolution of the angular distribution,charge state distribution and relatively transmission rate of 30-keV He2+ ions with 500 pA transmitting through a polycarbonate nanocapillary membrane at different incident angles (-0.5°,-1°,-1.5°,-2.5°).It is found that for the small tilt angles (-0.5°,-1°,-1.5°) the transmitted He2+ ions are located around the direction of incident beam,not along the capillary axis,and the directions of the transmitted H0 atoms change from the direction of capillary axis to the direction of incident beam gradually,during the experimental period,the charge exchange is observed.The charge patches in the capillaries overcome the transverse momentum of the incident ions,the ions are transmitted by specular scatterings on the inner surface of capillary,and the main transport mechanism of ions in the nanocapillary at the small tilt angles is the charge-patch-assisted collective scatterings on the surface.For a large tilt angle (-2.5°),the transmitted He2+ ions are located in the direction of the incident beam,and He0 atoms are always in the direction of capillary axis,the charge patches cannot overcome the transverse momentum of the incident ions,and the main transport mechanism of ions in the nanocapillary at the large tilt angles is the multiple random inelastic collisions below the surface.This finding increases the knowledge of charged ions through nanocapillary at different tilt angles within dozens of keV energies in many scientific fields.
      Corresponding author: Shao Jian-Xiong, shaojx@lzu.edu.cn;chenxm@lzu.edu.cn ; Chen Xi-Meng, shaojx@lzu.edu.cn;chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675067).
    [1]

    El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402

    [3]

    Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [4]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201

    [6]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [7]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [8]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [9]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [10]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [13]

    Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228

    [14]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902

    [15]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150

    [16]

    Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66

    [17]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201

    [18]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [20]

    Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 物理学报 66 093401]

    [23]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [24]

    Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]

    [25]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1]

    El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402

    [3]

    Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [4]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201

    [6]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [7]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [8]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [9]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [10]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [13]

    Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228

    [14]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902

    [15]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150

    [16]

    Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66

    [17]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201

    [18]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [20]

    Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 物理学报 66 093401]

    [23]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [24]

    Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]

    [25]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1] Zuo Yi-Wu, Tian Jing, Yang Qing, Hu Xiao, Jiang Yang. A low-frequency acoustic sensing scheme based on cladding mode of large-angle tilted fiber Bragg grating. Acta Physica Sinica, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [2] Li Zhang-Long, Hu Chang-Qing, Zhao Mei, Qin Ji-Xing, Li Zheng-Lin, Yang Xue-Feng. Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles. Acta Physica Sinica, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [3] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [4] Wang Mei-Ou, Xiao Qian, Jin Xia, Cao Yan-Yan, Xu Ya-Dong. Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating. Acta Physica Sinica, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [5] Ha Shuai, Zhang Wen-Ming, Xie Yi-Ming, Li Peng-Fei, Jin Bo, Niu Ben, Wei Long, Zhang Qi, Liu Zhong-Lin, Ma Yue, Lu Di, Wan Cheng-Liang, Cui Ying, Zhou Peng, Zhang Hong-Qiang, Chen Xi-Meng. Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries. Acta Physica Sinica, 2020, 69(9): 094101. doi: 10.7498/aps.69.20190933
    [6] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] Hou Qian-Nan, Wu Jin-Rong. Simplification of roughness bottom backscattering model at small grazing angle in shallow-water. Acta Physica Sinica, 2019, 68(4): 044301. doi: 10.7498/aps.68.20181475
    [8] Wang Yue, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen. Characteristics of granular sheet of dense granular jet oblique impact. Acta Physica Sinica, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [9] Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng. Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries. Acta Physica Sinica, 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [10] Geng Chuan-Wen,  Xia Yu-Hao,  Zhao Hong-Yang,  Fu Qiu-Ming,  Ma Zhi-Bin. Effect of edge inclination of single crystal diamond on homoepitaxial growth. Acta Physica Sinica, 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [11] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [13] Zhou Wang, Niu Shu-Tong, Yan Xue-Wen, Bai Xiong-Fei, Han Cheng-Zhi, Zhang Mei-Xiao, Zhou Li-Hua, Yang Ai-Xiang, Pan Peng, Shao Jian-Xiong, Chen Xi-Meng. Dynamic evolution of 100-keV H+ through polycarbonate nanocapillaries. Acta Physica Sinica, 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [14] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [15] Dai Jian-Feng, Fan Xue-Ping, Meng Bo, Liu Ji-Fei. A coupled level-set and volume-of-fluid simulation for splashing of single droplet impact on an inclined liquid film. Acta Physica Sinica, 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [16] Liang Gang-Tao, Shen Sheng-Qiang, Guo Ya-Li, Chen Jue-Xian, Yu Huan, Li Yi-Qiao. Special phenomena of droplet impact on an inclined wetted surface with experimental observation. Acta Physica Sinica, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [17] Diao Qi-Long, Huang Chun-Lin. Restraining parasitic interference fringe phenomenon in detection imaging through the medium with inclined angle. Acta Physica Sinica, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [18] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [19] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Liu Xu, Yang Hui. Analysis of the all-angle polarization beam splitting effect of the multi-layered wavy films. Acta Physica Sinica, 2006, 55(2): 910-913. doi: 10.7498/aps.55.910
    [20] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
Metrics
  • Abstract views:  5406
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2017
  • Accepted Date:  17 April 2018
  • Published Online:  05 September 2018

/

返回文章
返回